21 research outputs found

    Nonlinear Quantum Behavior of Ultrashort-Pulse Optical Parametric Oscillators

    Get PDF
    The quantum features of ultrashort-pulse optical parametric oscillators (OPOs) are theoretically investigated in the nonlinear regime near and above threshold. Starting from basic premises of input-output theory, we derive a general quantum model for pulsed OPOs subject to χ(2) interactions between a multimode signal cavity and a non-resonant broadband pump field, elucidating time scale conditions required for such pulsed OPOs to admit an input-output description. By employing a supermode decomposition of the nonlinear Lindblad operators governing pump-signal interactions, we perform multimode quantum simulations in the regime of strong nonlinearity and study effects such as pump depletion and corrections to the squeezing spectrum of the linearized model. We observe non-Gaussian states with Wigner function negativity and show that multimode interactions with the pump can act as decoherence channels

    Nonlinear Quantum Behavior of Ultrashort-Pulse Optical Parametric Oscillators

    Get PDF
    The quantum features of ultrashort-pulse optical parametric oscillators (OPOs) are theoretically investigated in the nonlinear regime near and above threshold. Starting from basic premises of input-output theory, we derive a general quantum model for pulsed OPOs subject to χ(2) interactions between a multimode signal cavity and a non-resonant broadband pump field, elucidating time scale conditions required for such pulsed OPOs to admit an input-output description. By employing a supermode decomposition of the nonlinear Lindblad operators governing pump-signal interactions, we perform multimode quantum simulations in the regime of strong nonlinearity and study effects such as pump depletion and corrections to the squeezing spectrum of the linearized model. We observe non-Gaussian states with Wigner function negativity and show that multimode interactions with the pump can act as decoherence channels

    Highly multimode visible squeezed light with programmable spectral correlations through broadband up-conversion

    Full text link
    Multimode squeezed states of light have been proposed as a resource for achieving quantum advantage in computing and sensing. Recent experiments that demonstrate multimode Gaussian states to this end have most commonly opted for spatial or temporal modes, whereas a complete system based on frequency modes has yet to be realized. Instead, we show how to use the frequency modes simultaneously squeezed in a conventional, single-spatial-mode, optical parametric amplifier when pumped by ultrashort pulses. Specifically, we show how adiabatic frequency conversion can be used not only to convert the quantum state from infrared to visible wavelengths, but to concurrently manipulate the joint spectrum. This near unity-efficiency quantum frequency conversion, over a bandwidth >45 THz and, to our knowledge, the broadest to date, allows us to measure the state with an electron-multiplying CCD (EMCCD) camera-based spectrometer, at non-cryogenic temperatures. We demonstrate the squeezing of >400 frequency modes, with a mean of approximately 700 visible photons per shot. Our work shows how many-mode quantum states of light can be generated, manipulated, and measured with efficient use of hardware resources -- in our case, using one pulsed laser, two nonlinear crystals, and one camera. This ability to produce, with modest hardware resources, large multimode squeezed states with partial programmability motivates the use of frequency encoding for photonics-based quantum information processing

    Image sensing with multilayer, nonlinear optical neural networks

    Full text link
    Optical imaging is commonly used for both scientific and technological applications across industry and academia. In image sensing, a measurement, such as of an object's position, is performed by computational analysis of a digitized image. An emerging image-sensing paradigm breaks this delineation between data collection and analysis by designing optical components to perform not imaging, but encoding. By optically encoding images into a compressed, low-dimensional latent space suitable for efficient post-analysis, these image sensors can operate with fewer pixels and fewer photons, allowing higher-throughput, lower-latency operation. Optical neural networks (ONNs) offer a platform for processing data in the analog, optical domain. ONN-based sensors have however been limited to linear processing, but nonlinearity is a prerequisite for depth, and multilayer NNs significantly outperform shallow NNs on many tasks. Here, we realize a multilayer ONN pre-processor for image sensing, using a commercial image intensifier as a parallel optoelectronic, optical-to-optical nonlinear activation function. We demonstrate that the nonlinear ONN pre-processor can achieve compression ratios of up to 800:1 while still enabling high accuracy across several representative computer-vision tasks, including machine-vision benchmarks, flow-cytometry image classification, and identification of objects in real scenes. In all cases we find that the ONN's nonlinearity and depth allowed it to outperform a purely linear ONN encoder. Although our experiments are specialized to ONN sensors for incoherent-light images, alternative ONN platforms should facilitate a range of ONN sensors. These ONN sensors may surpass conventional sensors by pre-processing optical information in spatial, temporal, and/or spectral dimensions, potentially with coherent and quantum qualities, all natively in the optical domain

    Scaling on-chip photonic neural processors using arbitrarily programmable wave propagation

    Full text link
    On-chip photonic processors for neural networks have potential benefits in both speed and energy efficiency but have not yet reached the scale at which they can outperform electronic processors. The dominant paradigm for designing on-chip photonics is to make networks of relatively bulky discrete components connected by one-dimensional waveguides. A far more compact alternative is to avoid explicitly defining any components and instead sculpt the continuous substrate of the photonic processor to directly perform the computation using waves freely propagating in two dimensions. We propose and demonstrate a device whose refractive index as a function of space, n(x,z)n(x,z), can be rapidly reprogrammed, allowing arbitrary control over the wave propagation in the device. Our device, a 2D-programmable waveguide, combines photoconductive gain with the electro-optic effect to achieve massively parallel modulation of the refractive index of a slab waveguide, with an index modulation depth of 10310^{-3} and approximately 10410^4 programmable degrees of freedom. We used a prototype device with a functional area of 12mm212\,\text{mm}^2 to perform neural-network inference with up to 49-dimensional input vectors in a single pass, achieving 96% accuracy on vowel classification and 86% accuracy on 7×77 \times 7-pixel MNIST handwritten-digit classification. This is a scale beyond that of previous photonic chips relying on discrete components, illustrating the benefit of the continuous-waves paradigm. In principle, with large enough chip area, the reprogrammability of the device's refractive index distribution enables the reconfigurable realization of any passive, linear photonic circuit or device. This promises the development of more compact and versatile photonic systems for a wide range of applications, including optical processing, smart sensing, spectroscopy, and optical communications

    Experimental investigation of performance differences between Coherent Ising Machines and a quantum annealer

    Get PDF
    Physical annealing systems provide heuristic approaches to solving NP-hard Ising optimization problems. Here, we study the performance of two types of annealing machines--a commercially available quantum annealer built by D-Wave Systems, and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillator networks--on two classes of problems, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on regular graphs of degree 3. On denser problems, however, we observe an exponential penalty for the quantum annealer (exp(αDWN2)\exp(-\alpha_\textrm{DW} N^2)) relative to CIMs (exp(αCIMN)\exp(-\alpha_\textrm{CIM} N)) for fixed anneal times, on both the SK model and on 50%-edge-density MAX-CUT, where the coefficients αCIM\alpha_\textrm{CIM} and αDW\alpha_\textrm{DW} are problem-class-dependent. On instances with over 5050 vertices, a several-orders-of-magnitude time-to-solution difference exists between CIMs and the D-Wave annealer. An optimal-annealing-time analysis is also consistent with a significant projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the measurement-feedback facilitated all-to-all connectivity of the CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.Comment: 12 pages, 5 figures, 1 table (main text); 14 pages, 12 figures, 2 tables (supplementary
    corecore