Nonlinear Quantum Behavior of Ultrashort-Pulse Optical Parametric Oscillators

Abstract

The quantum features of ultrashort-pulse optical parametric oscillators (OPOs) are theoretically investigated in the nonlinear regime near and above threshold. Starting from basic premises of input-output theory, we derive a general quantum model for pulsed OPOs subject to χ(2) interactions between a multimode signal cavity and a non-resonant broadband pump field, elucidating time scale conditions required for such pulsed OPOs to admit an input-output description. By employing a supermode decomposition of the nonlinear Lindblad operators governing pump-signal interactions, we perform multimode quantum simulations in the regime of strong nonlinearity and study effects such as pump depletion and corrections to the squeezing spectrum of the linearized model. We observe non-Gaussian states with Wigner function negativity and show that multimode interactions with the pump can act as decoherence channels

    Similar works