2 research outputs found

    Nanoprotective Layer-by-Layer Coatings with Epoxy Components for Enhancing Abrasion Resistance: Toward Robust Multimaterial Nanoscale Films

    No full text
    Layer-by-Layer (LbL) assembled films offer many interesting applications (<i>e.g.</i>, in the field of nanoplasmonics), but are often mechanically feeble. The preparation of nanoprotective films of an oligomeric novolac epoxy resin with poly(ethyleneimine) using covalent LbL-assembly is described. The film growth is linear, and the thickness increment per layer pair is easily controlled by varying the polymer concentration and/or the adsorption times. The abrasion resistance of such cross-linked films was tested using a conventional rubbing machine and found to be greatly enhanced in comparison to that of classic LbL-films that are mostly assembled through electrostatic interactions. These robust LbL-films are then used to mechanically protect LbL-films that would completely be removed by a few rubbing cycles in the absence of a protective coating. A 45 nm thick LbL-film composed of gold nanoparticles and poly(allylamine hydrochloride) was chosen as an especially weak example for a functional multilayer system. The critical thickness for the protective LbL-coatings on top of the weak multilayer was determined to be about 6 layer pairs corresponding to about only 10 nm. At this thickness, the whole film withstands at least 25 abrasion cycles with a reduction of the total thickness of only about 2%

    Altering the Static Dipole on Surfaces through Chemistry: Molecular Films of Zwitterionic Quinonoids

    No full text
    The adsorption of molecular films made of small molecules with a large intrinsic electrical dipole has been explored. The data indicate that such dipolar molecules may be used for altering the interface dipole screening at the metal electrode interface in organic electronics. More specifically, we have investigated the surface electronic spectroscopic properties of zwitterionic molecules containing 12π electrons of the <i>p</i>-benzoquinonemonoimine type, C<sub>6</sub>H<sub>2</sub>(<u>···</u>NHR)<sub>2</sub>(<u>···</u>O)<sub>2</sub> (R = H (<b>1</b>), <i>n</i>-C<sub>4</sub>H<sub>9</sub> (<b>2</b>), C<sub>3</sub>H<sub>6</sub>–S–CH<sub>3</sub> (<b>3</b>), C<sub>3</sub>H<sub>6</sub>–O–CH<sub>3</sub> (<b>4</b>), CH<sub>2</sub>–C<sub>6</sub>H<sub>5</sub> (<b>5</b>)), adsorbed on Au. These molecules are stable zwitterions by virtue of the meta positions occupied by the nitrogen and oxygen substituents on the central ring, respectively. The structures of <b>2</b>–<b>4</b> have been determined by single crystal X-ray diffraction and indicate that in these molecules, two chemically connected but electronically not conjugated 6π electron subunits are present, which explains their strong dipolar character. We systematically observed that homogeneous molecular films with thickness as small as 1 nm were formed on Au, which fully cover the surface, even for a variety of R substituents. Preferential adsorption toward the patterned gold areas on SiO<sub>2</sub> substrates was found with <b>4</b>. Optimum self-assembling of <b>2</b> and <b>5</b> results in ordered close packed films, which exhibit n-type character, based on the position of the Fermi level close to the conduction band minimum, suggesting high conductivity properties. This new type of self-assembled molecular films offers interesting possibilities for engineering metal–organic interfaces, of critical importance for organic electronics
    corecore