16 research outputs found

    Luminous Efficiency of Axial In<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>N/GaN Nanowire Heterostructures: Interplay of Polarization and Surface Potentials

    No full text
    Using continuum elasticity theory and an eight-band <b>k</b>·<b>p</b> formalism, we study the electronic properties of GaN nanowires with axial In<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>N insertions. The three-dimensional strain distribution in these insertions and the resulting distribution of the polarization fields are fully taken into account. In addition, we consider the presence of a surface potential originating from Fermi level pinning at the sidewall surfaces of the nanowires. Our simulations reveal an in-plane spatial separation of electrons and holes in the case of weak piezoelectric potentials, which correspond to an In content and layer thickness required for emission in the blue and violet spectral range. These results explain the quenching of the photoluminescence intensity experimentally observed for short emission wavelengths. We devise and discuss strategies to overcome this problem

    Strain Engineering of Nanowire Multi-Quantum Well Demonstrated by Raman Spectroscopy

    No full text
    An analysis of the strain in an axial nanowire superlattice shows that the dominating strain state can be defined arbitrarily between unstrained and maximum mismatch strain by choosing the segment height ratios. We give experimental evidence for a successful strain design in series of GaN nanowire ensembles with axial In<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>N quantum wells. We vary the barrier thickness and determine the strain state of the quantum wells by Raman spectroscopy. A detailed calculation of the strain distribution and LO phonon frequency shift shows that a uniform in-plane lattice constant in the nanowire segments satisfactorily describes the resonant Raman spectra, although in reality the three-dimensional strain profile at the periphery of the quantum wells is complex. Our strain analysis is applicable beyond the In<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>N/GaN system under study, and we derive universal rules for strain engineering in nanowire heterostructures

    Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core–Shell Heterostructures

    No full text
    The flexibility and quasi-one-dimensional nature of nanowires offer wide-ranging possibilities for novel heterostructure design and strain engineering. In this work, we realize arrays of extremely and controllably bent nanowires comprising lattice-mismatched and highly asymmetric core–shell heterostructures. Strain sharing across the nanowire heterostructures is sufficient to bend vertical nanowires over backward to contact either neighboring nanowires or the substrate itself, presenting new possibilities for designing nanowire networks and interconnects. Photoluminescence spectroscopy on bent-nanowire heterostructures reveals that spatially varying strain fields induce charge carrier drift toward the tensile-strained outside of the nanowires, and that the polarization response of absorbed and emitted light is controlled by the bending direction. This unconventional strain field is employed for light emission by placing an active region of quantum dots at the outer side of a bent nanowire to exploit the carrier drift and tensile strain. These results demonstrate how bending in nanoheterostructures opens up new degrees of freedom for strain and device engineering

    Spontaneous Nucleation and Growth of GaN Nanowires: The Fundamental Role of Crystal Polarity

    No full text
    We experimentally investigate whether crystal polarity affects the growth of GaN nanowires in plasma-assisted molecular beam epitaxy and whether their formation has to be induced by defects. For this purpose, we prepare smooth and coherently strained AlN layers on 6H-SiC(0001) and SiC(0001̅) substrates to ensure a well-defined polarity and an absence of structural and morphological defects. On N-polar AlN, a homogeneous and dense N-polar GaN nanowire array forms, evidencing that GaN nanowires form spontaneously in the absence of defects. On Al-polar AlN, we do not observe the formation of Ga-polar GaN NWs. Instead, sparse N-polar GaN nanowires grow embedded in a Ga-polar GaN layer. These N-polar GaN nanowires are shown to be accidental in that the necessary polarity inversion is induced by the formation of Si<sub><i>x</i></sub>N. The present findings thus demonstrate that spontaneously formed GaN nanowires are irrevocably N-polar. Due to the strong impact of the polarity on the properties of GaN-based devices, these results are not only essential to understand the spontaneous formation of GaN nanowires but also of high technological relevance

    Radial Stark Effect in (In,Ga)N Nanowires

    No full text
    We study the luminescence of unintentionally doped and Si-doped In<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>N nanowires with a low In content (<i>x</i> < 0.2) grown by molecular beam epitaxy on Si substrates. The emission band observed at 300 K from the unintentionally doped samples is centered at much lower energies (800 meV) than expected from the In content measured by X-ray diffractometry and energy dispersive X-ray spectroscopy. This discrepancy arises from the pinning of the Fermi level at the sidewalls of the nanowires, which gives rise to strong radial built-in electric fields. The combination of the built-in electric fields with the compositional fluctuations inherent to (In,Ga)N alloys induces a competition between spatially direct and indirect recombination channels. At elevated temperatures, electrons at the core of the nanowire recombine with holes close to the surface, and the emission from unintentionally doped nanowires exhibits a Stark shift of several hundreds of meV. The competition between spatially direct and indirect transitions is analyzed as a function of temperature for samples with various Si concentrations. We propose that the radial Stark effect is responsible for the broadband absorption of (In,Ga)N nanowires across the entire visible range, which makes these nanostructures a promising platform for solar energy applications

    Polarity-Induced Selective Area Epitaxy of GaN Nanowires

    No full text
    We present a conceptually novel approach to achieve selective area epitaxy of GaN nanowires. The approach is based on the fact that these nanostructures do not form in plasma-assisted molecular beam epitaxy on structurally and chemically uniform cation-polar substrates. By <i>in situ</i> depositing and nitridating Si on a Ga-polar GaN film, we locally reverse the polarity to induce the selective area epitaxy of N-polar GaN nanowires. We show that the nanowire number density can be controlled over several orders of magnitude by varying the amount of predeposited Si. Using this growth approach, we demonstrate the synthesis of single-crystalline and uncoalesced nanowires with diameters as small as 20 nm. The achievement of nanowire number densities low enough to prevent the shadowing of the nanowire sidewalls from the impinging fluxes paves the way for the realization of homogeneous core-shell heterostructures without the need of using <i>ex situ</i> prepatterned substrates

    A Comparative Proteomic Study of Human Skin Suction Blister Fluid from Healthy Individuals Using Immunodepletion and iTRAQ Labeling

    No full text
    Aberrations in skin morphology and functionality can cause acute and chronic skin-related diseases that are the focus of dermatological research. Mechanically induced skin suction blister fluid may serve as a potential, alternative human body fluid for quantitative mass spectrometry (MS)-based proteomics in order to assist in the understanding of the mechanisms and causes underlying skin-related diseases. The combination of abundant-protein removal with iTRAQ technology and multidimensional fractionation techniques improved the number of identified protein groups. A relative comparison of a cohort of 8 healthy volunteers was thus recruited in order to assess the net variability encountered in a healthy scenario. The technology enabled the identification, to date, of the highest number of reported protein groups (739) with concomitant relative quantitative data for over 90% of all proteins with high reproducibility and accuracy. The use of iTRAQ 8-plex resulted in a 66% decrease in protein identifications but, despite this, provided valuable insight into interindividual differences of the healthy control samples. The geometric mean ratio was close to 1 with 95% of all ratios ranging between 0.45 and 2.05 and a calculated mean coefficient of variation of 15.8%, indicating a lower biological variance than that reported for plasma or urine. By applying a multistep sample processing, the obtained sensitivity and accuracy of quantitative MS analysis demonstrates the prospective value of the approach in future research into skin diseases

    A Comparative Proteomic Study of Human Skin Suction Blister Fluid from Healthy Individuals Using Immunodepletion and iTRAQ Labeling

    No full text
    Aberrations in skin morphology and functionality can cause acute and chronic skin-related diseases that are the focus of dermatological research. Mechanically induced skin suction blister fluid may serve as a potential, alternative human body fluid for quantitative mass spectrometry (MS)-based proteomics in order to assist in the understanding of the mechanisms and causes underlying skin-related diseases. The combination of abundant-protein removal with iTRAQ technology and multidimensional fractionation techniques improved the number of identified protein groups. A relative comparison of a cohort of 8 healthy volunteers was thus recruited in order to assess the net variability encountered in a healthy scenario. The technology enabled the identification, to date, of the highest number of reported protein groups (739) with concomitant relative quantitative data for over 90% of all proteins with high reproducibility and accuracy. The use of iTRAQ 8-plex resulted in a 66% decrease in protein identifications but, despite this, provided valuable insight into interindividual differences of the healthy control samples. The geometric mean ratio was close to 1 with 95% of all ratios ranging between 0.45 and 2.05 and a calculated mean coefficient of variation of 15.8%, indicating a lower biological variance than that reported for plasma or urine. By applying a multistep sample processing, the obtained sensitivity and accuracy of quantitative MS analysis demonstrates the prospective value of the approach in future research into skin diseases

    A Comparative Proteomic Study of Human Skin Suction Blister Fluid from Healthy Individuals Using Immunodepletion and iTRAQ Labeling

    No full text
    Aberrations in skin morphology and functionality can cause acute and chronic skin-related diseases that are the focus of dermatological research. Mechanically induced skin suction blister fluid may serve as a potential, alternative human body fluid for quantitative mass spectrometry (MS)-based proteomics in order to assist in the understanding of the mechanisms and causes underlying skin-related diseases. The combination of abundant-protein removal with iTRAQ technology and multidimensional fractionation techniques improved the number of identified protein groups. A relative comparison of a cohort of 8 healthy volunteers was thus recruited in order to assess the net variability encountered in a healthy scenario. The technology enabled the identification, to date, of the highest number of reported protein groups (739) with concomitant relative quantitative data for over 90% of all proteins with high reproducibility and accuracy. The use of iTRAQ 8-plex resulted in a 66% decrease in protein identifications but, despite this, provided valuable insight into interindividual differences of the healthy control samples. The geometric mean ratio was close to 1 with 95% of all ratios ranging between 0.45 and 2.05 and a calculated mean coefficient of variation of 15.8%, indicating a lower biological variance than that reported for plasma or urine. By applying a multistep sample processing, the obtained sensitivity and accuracy of quantitative MS analysis demonstrates the prospective value of the approach in future research into skin diseases

    A Comparative Proteomic Study of Human Skin Suction Blister Fluid from Healthy Individuals Using Immunodepletion and iTRAQ Labeling

    No full text
    Aberrations in skin morphology and functionality can cause acute and chronic skin-related diseases that are the focus of dermatological research. Mechanically induced skin suction blister fluid may serve as a potential, alternative human body fluid for quantitative mass spectrometry (MS)-based proteomics in order to assist in the understanding of the mechanisms and causes underlying skin-related diseases. The combination of abundant-protein removal with iTRAQ technology and multidimensional fractionation techniques improved the number of identified protein groups. A relative comparison of a cohort of 8 healthy volunteers was thus recruited in order to assess the net variability encountered in a healthy scenario. The technology enabled the identification, to date, of the highest number of reported protein groups (739) with concomitant relative quantitative data for over 90% of all proteins with high reproducibility and accuracy. The use of iTRAQ 8-plex resulted in a 66% decrease in protein identifications but, despite this, provided valuable insight into interindividual differences of the healthy control samples. The geometric mean ratio was close to 1 with 95% of all ratios ranging between 0.45 and 2.05 and a calculated mean coefficient of variation of 15.8%, indicating a lower biological variance than that reported for plasma or urine. By applying a multistep sample processing, the obtained sensitivity and accuracy of quantitative MS analysis demonstrates the prospective value of the approach in future research into skin diseases
    corecore