205 research outputs found

    Coupled THM modelling of engineered barriers for the final disposal of spent nuclear fuel isolation

    Get PDF
    This paper describes the thermohydromechanical (THM) simulation of engineered barrier systems (EBS) for the final disposal of nuclear spent fuel in Finland. The bentonite barriers were simulated with the Barcelona Basic Model and the model was calibrated from laboratory tests. The evolution of gap closure and the presence of a fracture intersecting the disposal were analysed. The simulations were performed in 2D axisymmetrical geometries. Full 3D simulations were carried out in order to check the effect of the third dimension. The time required for the barriers to reach full saturation, the maximum temperature, deformations and displacements at the buffer–backfill interface and the homogenization of components both locally and globally are the main interests. The effect of rock fracture and the hydraulic conductivity of the rock are subjected to 2D sensitivity analyses.Peer ReviewedPostprint (published version

    Triaxial tests on frozen ground: formulation and modelling

    Get PDF
    Artificial Ground Freezing (AGF) is a controllable process that can be used by engineers to stabilise temporarily the ground, provide structural support and/or exclude groundwater from an excavation until construction of the final lining provides permanent stability and water tightness. In this work, the process of ground freezing is studied using a constitutive model that encompasses frozen and unfrozen behaviour within a unified effective-stress-based framework and employs a combination of ice pressure, liquid water pressure and total stress as state variables. The parameters of the constitutive model are calibrated against experimental data obtained from samples retrieved during construction of Napoli underground, in which AGF was extensively used to excavate in granular soils and weak fractured rock below the ground water table

    A thermo-hygro-mechanical model for concrete shrinkage: preliminary study

    Get PDF
    The concrete shrinkage is a common effect of the concrete material behavior during concrete strengthening. The shrinkage is usually a function of the particular concrete material features, its quality, curing process, structural element size, and thermal-hydraulic boundary conditions during the working stress life-time conditions. Typically, grid-geometry steel bars with reinforcement function (rebar) are placed close to the concrete contour surface (coating spacing) to avoid the undesired shrinkage cracks with consequent material section loss. In addition to the solution through classical steel-grid rebar, there are other alternatives considering new materials and methodologies during concrete casting which are still under development (as the use of master fibers is) and may be also appropriate to avoid concrete shrinkage cracking with reducing material and installation costs.The concrete shrinkage is a common effect of the concrete material behavior during concrete strengthening. The shrinkage is usually a function of the particular concrete material features, its quality, curing process, structural element size, and thermal-hydraulic boundary conditions during the working stress life-time conditions. Typically, grid-geometry steel bars with reinforcement function (rebar) are placed close to the concrete contour surface (coating spacing) to avoid the undesired shrinkage cracks with consequent material section loss. In addition to the solution through classical steel-grid rebar, there are other alternatives considering new materials and methodologies during concrete casting which are still under development (as the use of master fibers is) and may be also appropriate to avoid concrete shrinkage cracking with reducing material and installation costs.Preprin

    Coupled Thermo-Hydro-Mechanical and Chemical Analysis of Expansive Clay Subjected to Heating and Hydration

    Get PDF
    A fully coupled formulation combining reactive transport and an existing thermo-hydro-mechanical (THM) code is presented. Special attention has been given to phenomena likely to be encountered in clay barriers used as part of containment systems of nuclear waste. The types of processes considered include hydrolysis, complex formation, oxidation/reduction reactions, acid/base reactions, precipitation/dissolution of minerals and cation exchange. Both kinetically-controlled and equilibrium-controlled reactions have been incorporated. The total analytical concentrations (including precipitated minerals) are adopted as basic transport variables and chemical equilibrium is achieved by minimizing Gibbs Free Energy. The formulation has been incorporated in a general purpose computer code capable of performing numerical analysis of engineering problems. A validation exercise concerning a laboratory experiment involving the heating and hydration of an expansive compacted clay is described

    Effect of thermo-coupled processes on the behaviour of a clay barrier submitted to heating and hydration

    Get PDF
    The storage of high level radioactive waste is still an unresolved problem of the nuclear industry, being geological disposal the most favoured option and, naturally, the one requiring the strongest geo-mechanical input. Most conceptual designs for the deep geological disposal of nuclear waste envisage placing the canisters containing the waste in horizontal drifts or vertical boreholes. The empty space surrounding the canisters is filled by an engineered barrier often made up of compacted swelling clay. In the barrier and the near field, significant thermo-hydro-mechanical (THM) phenomena take place that interact in a complex way. A good understanding of THM issues is, therefore, necessary to ensure a correct performance of engineered barriers and seals. The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal are being simulated in a mock-up heating test at almost scale, at the premises of CIEMAT in Madrid. The evolution of the main Thermo-Hydro-Mechanical (THM) variables of this test are analysed in this paper by using a fully coupled THM formulation and the corresponding finite element code. Special emphasis has been placed on the study of the effect of thermo-osmotic flow in the hydration of the clay barrier at an advanced staged of the experimen

    THM analysis of a large-scale heating test incorporating material fabric changes

    Get PDF
    Engineered barriers are basic elements in the design of repositories for the isolation of high‐level radioactive waste. This paper presents the thermo‐hydro‐mechanical (THM) analysis of a clay barrier subjected to heating and hydration. The study focuses on an ongoing large‐scale heating test, at almost full scale, which is being carried out at the CIEMAT laboratory under well‐controlled boundary conditions. The test is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of the FEBEX and NF‐PRO projects have allowed the identification of the model parameters to describe the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short term (i.e. for times shorter than three years), but some model limitations were detected concerning the prediction of the long‐term hydration rate. An additional analysis of the test has been carried out using a double structure model to describe the actual behaviour of expansive clays. The double structure model explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able to account for the evolution of the material fabric. The simulation of the experiment using this enhanced model provides a more satisfactory reproduction of the long‐term experimental results. It also contributes to a better understanding of the observed test behaviour and it provides a physically based explanation for the very slow hydration of the barrier.&nbsp

    THM modelling of Onkalo – final disposal of radioactive spent nuclear fuel

    Get PDF

    A new approach to model geomaterials with heterogeneous properties in thermo-hydro-mechanical coupled problems

    Get PDF
    The main objective of this article is to present a new approach to model coupled thermo-hydro-mechanical problems considering geomaterials with heterogeneous properties. This approach has been implemented in the software CODE_BRIGHT and it provides the possibility of considering geomaterials with a spatially correlated heterogeneous field of porosity, following a normal distribution. This spatial correlation can be isotropic or anisotropic. An important feature of this approach is that material properties such as intrinsic permeability, thermal conductivity, diffusivity, retention curve, elastic modulus or cohesion are defined as a function of porosity and, thus, they become heterogeneous with spatial correlation and, eventually, anisotropic. A validation exercise and other basic numerical examples have been carried out to illustrate the possibilities of the proposed approach. The results, which have been compared with a homogeneous case, show that considering heterogeneous fields can be relevant in different modelling problems, especially coupled thermo-hydro-mechanical problems.This research was supported by the CODE_BRIGHT Project (CIMNE, International Centre for Numerical Methods in Engineering) and by the DECOVALEX Project. The second author was supported by a CSC scholarship (No. 202008390058). The CODE_BRIGHT project is funded by a Consortium composed by SKB (Sweden), Posiva (Finland), GRS (Germany) and ANDRA (France). DECOVALEX is an international research project comprising participants from industry, government and academia, focusing on development of understanding, models and codes in complex coupled problems in sub-surface geological and engineering applications; DECOVALEX-2023 is the current phase of the project. The authors appreciate and thank the DECOVALEX-2023 Funding Organisations ANDRA, BASE, BGE, BGR, CAS, CNSC, COVRA, US DOE, ENRESA, ENSI, JAEA, KAERI, NWMO, NWS, SÚRAO, SSM and Taipower for their financial and technical support of the work described in this paper. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of the Funding Organisations. Special thanks to I.P. Damians for facilitating the original numerical model used in his work (Damians et al., 2020), in which one of the models presented in this article has been based.Peer ReviewedPostprint (published version

    Implementation algorithm of a generalised plasticity model for swelling clays

    Get PDF
    A multi-mechanism generalisation of Sloan’s integration scheme for elasto-plastic laws has been developed in order to implement a double structure model for expansive clays into a FE code. The constitutive model is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of the two pore levels often present in expansive clays. The distinction between macro and microstructure provides the opportunity to take into account the dominant phenomena that affect the behaviour of each structural level and the main interactions between them. The model is formulated using concepts of classical and generalised plasticity theories. The integration scheme proposed can deal with the two plastic mechanisms defined in the model and can incorporate the effects of strains, suction and temperature in the stress integration process. A large scale heating test is analysed to check the capabilities of the implemented model to simulate an actual problem involving complex thermo-hydro-mechanical stress paths. The performance of the model has been very satisfactory and the proposed integration scheme has proved to be robust and efficient in solving a highly non-linear coupled problem

    Artificial ground freezing of a volcanic ash: laboratory tests and modelling

    Get PDF
    The use of artificial ground freezing (AGF) to form earth support systems has had applications worldwide. These cover a variety of construction problems, including the formation of frozen earth walls to support deep excavations, structural underpinning for foundation improvement and temporary control of ground water in construction processes. On one hand, the main advantage of AGF as a temporary support system in comparison to other support methods, such as those based on injections of chemical or cement grout into the soil, is the low impact on the surrounding environment as the refrigerating medium required to obtain AGF is circulated in pipes and exhausted in the atmosphere or re-circulated without contamination of the ground water. On the other hand, the available methods may vary significantly in their sustainability and complexity in terms of times and costs required for their installation and maintenance. The ability to predict the effects induced by AGF on granular materials is therefore crucial to assessing construction time and cost and to optimising the method. In this work, the thermo-hydro-mechanical processes induced by artificial freezing of a soil body are studied using a constitutive model that encompasses frozen and unfrozen behaviour within a unified effective-stress-based framework. It makes use of a combination of ice pressure, liquid water pressure and total stress as state variables. The model is validated and calibrated using the results of a series of laboratory tests on natural samples of a volcanic ash (Pozzolana) retrieved during construction of Napoli underground, where the technique of AGF was used extensively to stabilise temporarily the ground and control the ground water
    corecore