8 research outputs found

    Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

    Get PDF
    This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one

    Improved Dynamic Optimized Kernel Partial Least Squares for Nonlinear Process Fault Detection

    No full text
    We suggest in this article a dynamic reduced algorithm in order to enhance the monitoring abilities of nonlinear processes. Dynamic fault detection using data-driven methods is among the key technologies, which shows its ability to improve the performance of dynamic systems. Among the data-driven techniques, we find the kernel partial least squares (KPLS) which is presented as an interesting method for fault detection and monitoring in industrial systems. The dynamic reduced KPLS method is proposed for the fault detection procedure in order to use the advantages of the reduced KPLS models in online mode. Furthermore, the suggested method is developed to monitor the time-varying dynamic system and also update the model of reduced reference. The reduced model is used to minimize the computational cost and time and also to choose a reduced set of kernel functions. Indeed, the dynamic reduced KPLS allows adaptation of the reduced model, observation by observation, without the risk of losing or deleting important information. For each observation, the update of the model is available if and only if a further normal observation that contains new pertinent information is present. The general principle is to take only the normal and the important new observation in the feature space. Then the reduced set is built for the fault detection in the online phase based on a quadratic prediction error chart. Thereafter, the Tennessee Eastman process and air quality are used to precise the performances of the suggested methods. The simulation results of the dynamic reduced KPLS method are compared with the standard one
    corecore