21 research outputs found

    The effects of oviposition site deprivation up to 40 days on reproductive performance, eggs development, and ovipositional behaviour in Anopheles gambiae (Diptera, Nematocera, Culicidae)

    Get PDF
    The African malaria mosquito, Anopheles gambiae, depends on availability of suitable surface water for oviposition. The scarcity of breeding sites that characterizes droughts force gravid mosquitoes to delay oviposition and retain eggs in their ovaries. In laboratory conditions, we explored the possible consequences of preset duration of oviposition delay on reproductive capacity, egg viability, emergence and ovipositional behavior in gravid females of A. gambiae waiting for eggs laying in a context of oviposition delay. Overall, the mean anopheles egg batch size was not affected by the duration of the oviposition site deprivation. The embryo rates, hatchability and emergence rates decreased significantly gradually as the retention time is extended. However, the oviposition site deprivation has not been identified as a factor that can change the behavior of Anopheles in their choice of oviposition site

    A shift from Indoor Residual Spraying (IRS) with bendiocarb to Long-Lasting Insecticidal (mosquito) Nets (LLINs) associated with changes in malaria transmission indicators in pyrethroid resistance areas in Benin

    Get PDF
    BACKGROUND: Indoor residual spraying (IRS) was implemented in the department of OuĂ©mĂ©-Plateau, southern Benin, in 2008 and withdrawn in 2011, when long lasting insecticidal nets (LLINs) were distributed to the communities that were previously targeted by IRS. Did the LLIN strategy provide a better level of protection against malaria transmission than IRS? METHODS: Entomological surveillance was carried out to assess indicators of transmission risk during the last year of IRS and the first year after the LLIN intervention was put in place (2010–2011). Mosquito biting density was sampled by human landing collection (HLC). Females of Anopheles gambiae s.l. were dissected to estimate the parity rates and the blood meal index. A subsample of the An. gambiae s.l. collection was tested for presence of Plasmodium falciparum sporozoites. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behavior of Anopheles vectors. RESULTS: There were significant increases in all the indicators following withdrawal of IRS. Vector biting density (p<0.001) and longevity (OR=3.81[3.01-4.82] 95% CI; p<0.001) of the An. gambiae s.l. increased significantly; so too did the blood meal index (OR=1.48 [1.1-1.99] 95% CI; p<0.001). Entomological inoculation rate, after IRS withdrawal at one surveillance site, Adjohoun, rose two fold (9.0 infected bites/person/9 months (Apr-Dec 2011) versus 3.66 infective bites/person during the 9 months preceding IRS (Apr-Dec 2010). A second site, MissĂ©rĂ©tĂ©, experienced a six-fold increase after IRS cessation (15.1 infective bites/person/9 months versus 2.41 during IRS). Exophily after IRS cessation decreased significantly in all areas (p<0.001) suggesting that mosquitoes were more likely to rest in houses with LLINs, than in houses subjected to IRS. CONCLUSION: LLINs did not impact on indicators of transmission to the same levels as did IRS after IRS withdrawal

    Dry season refugia for anopheline larvae and mapping of the seasonal distribution in mosquito larval habitats in Kandi, northeastern Benin

    Get PDF
    BACKGROUND: The dynamics of mosquito populations depends on availability of suitable surface water for oviposition. It is well known that suitable management of mosquito larval habitats in the sub-Saharan countries, particularly during droughts, could help to suppress vector densities and malaria transmission. We conducted a field survey to investigate the spatial and seasonal distribution of mosquito larval habitats and identify drought-refugia for anopheline larvae. METHODS: A GIS approach was used to identify, geo-reference and follow up longitudinally from May 2012 to May 2013, all mosquito breeding sites in two rural sites (Yondarou and Thui), one urban (Kossarou), and one peri-urban (PĂšdĂš) site at Kandi, a municipality in northeastern Benin. In Kandi, droughts are excessive with no rain for nearly six months and a lot of sunshine. A comprehensive record of mosquito larval habitats was conducted periodically in all sites for the identification of drought-refugia of anopheline larval stages. With geospatialisation data, seasonal larval distribution maps were generated for each study site with the software ArcGIS version 10.2. RESULTS: Overall, 187 mosquito breeding sites were identified of which 29.95% were recorded during drought. In rural, peri-urban and urban sites, most of the drought-refugia of anopheline larvae were domestic in nature (61.54%). Moreover, in rural settings, anopheline larvae were also sampled in cisterns and wells (25% of larval habitats sampled during drought in Yondarou and 20% in Thui). The mapping showed a significant decrease in the spatial distribution of mosquito larval habitats in rural, peri-urban and urban sites during drought, except in Yondarou (rural) where the aridity did not seem to influence the distribution of larval habitats. CONCLUSION: Our data showed that the main drought-refugia of anopheline larvae were of a domestic nature as well as wells and cisterns. A suitable management of mosquito larvae in sub-Saharan countries, particularly during droughts, should target such larval habitats for a meaningful impact on the dynamics of mosquito populations and malaria transmission

    Impact of operational effectiveness of long-lasting insecticidal nets (LLINs) on malaria transmission in pyrethroid-resistant areas.

    Get PDF
    BACKGROUND: A dynamic study on the transmission of malaria was conducted in two areas (Râș area: Low resistance area; Râșâșâș area: High resistance area) in the department of Plateau in South Eastern Benin, where the population is protected by Long Lasting Insecticidal Nets (LLINs). The aim of this study was to determine if the resistance of malaria vectors to insecticides has an impact on their behavior and on the effectiveness of LLINs in the reduction of malaria transmission. METHODS: Populations of Anopheles gambiae s.l. were sampled monthly by human landing catch in the two areas to evaluate human biting rates (HBR). Collected mosquitoes were identified morphologically and female Anopheles mosquitoes were tested for the presence of Plasmodium falciparum antigen as assessed using ELISA. The entomological inoculation rate (EIR) was also calculated (EIR = HBR x sporozoitic index [S]). We estimated the parity rate by dissecting the females of An. gambiae. Finally, window catch and spray catch were conducted in order to assess the blood feeding rate and the exophily rate of vectors. RESULTS: After 6 months of tracking the mosquito's behavior in contact with the LLINs (Olyset) in Râșâșâș and Râș areas, the entomological indicators of the transmission of malaria (parity rate and sporozoitic index) were similar in the two areas. Also, An. gambiae populations showed the same susceptibility to P. falciparum in both Râș and Râșâșâș areas. The EIR and the exophily rate are higher in Râș area than in Râșâșâș area. But the blood-feeding rate is lower in Râș area comparing to Râșâșâș. CONCLUSION: The highest entomological inoculation rate observed in Râș area is mostly due to the strong aggressive density of An. gambiae recorded in one of the study localities. On the other hand, the highest exophily rate and the low blood-feeding rate recorded in Râș area compared to Râșâșâș area are not due to the resistance status of An. gambiae, but due to the differences in distribution and availability of breeding sites for Anopheles mosquitoes between areas. However, this phenomenon is not related to the resistance status, but is related to the environment instead

    Resistance status of Anopheles gambiae s.l. to insecticides following the 2011 mass distribution campaign of long-lasting insecticidal nets (LLINs) in the Plateau Department, south-eastern Benin

    Get PDF
    Abstract Background In 2011, Benin’s National Malaria Control Programme (NMCP) organized a nationwide mass distribution campaign of LLINs throughout the country. Following this intervention, it was important to assess whether the level of susceptibility of malaria vectors to insecticides had remained the same as compared to the pre-intervention period. The current study investigated this. Methods Larval collections were conducted in Ifangni, SakĂ©tĂ©, PobĂš and KĂ©tou districts located in Plateau department, Southeastern Benin before (2009) and after (2012–2013) LLIN distribution. Anopheles gambiae sensu lato (s.l.) larvae from the 4 study districts were reared to adulthood and WHO susceptibility tests were conducted. The insecticides tested were deltamethrin (0.05%), permethrin (0.75%), bendiocarb (0.1%) and DDT (4%). Molecular species identification as well as, the characterization of the kdr L1014F mutation were also performed in the An. gambiae s.l. complex using PCR method. Results Overall, a significant decrease in mortality rates of An. gambiae s.l. to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%) was observed post-LLIN distribution, respectively: (100% vs 80.9%, p &lt; 0.0001), (77.5% vs 70%, p = 0.01) and, (47.8% vs 4.4%, p &lt; 0.0001). By contrast, susceptibility of vectors to bendiocarb (0.1%) remained the same (100% mortality in the WHO susceptibility tube tests) pre- and post-intervention. An increase in the kdr L1014F frequency was observed post-LLIN distribution [F(kdr) = 0.91)] compared to the pre-intervention period [F(kdr) = 0.56], p &lt; 0.0001. Anopheles coluzzii and An. gambiae were the two molecular species identified in the study area. Conclusion The decrease susceptibility to pyrethroids and DDT as well as, the increase in the frequency of the kdr L1014F mutation after the intervention stressed at the time, the need for the development and implementation of effective insecticide resistance management strategies. At present, an update of the vectors resistance status in the area is also necessary for decision-making. </jats:sec

    Impact of three years of large scale Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) interventions on insecticide resistance in Anopheles gambiae s.l. in Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Benin, Indoor Residual Spraying (IRS) and long-lasting insecticidal nets (LLINs) are the cornerstones of malaria prevention. In the context of high resistance of <it>Anopheles gambiae </it>to pyrethroids, The National Malaria Control Program (NMCP) has undertaken a full coverage of IRS in a no-flood zone in the Oueme region, coupled with the distribution of LLINs in a flood zone. We assessed the impact of this campaign on phenotypic resistance, <it>kdr </it>(knock-down resistance) and <it>ace-1<sup>R </sup></it>(insensitive acetylcholinesterase) mutations.</p> <p>Methods</p> <p>Insecticides used for malaria vector control interventions were bendiocarb WP (0.4 g/m<sup>2</sup>) and deltamethrin (55 mg/m<sup>2</sup>), respectively for IRS and LLINs. Susceptibility status of <it>An. gambiae </it>was assessed using World Health Organization bioassay tests to DDT, permethrin, deltamethrin and bendiocarb in the Oueme region before intervention (2007) and after interventions in 2008 and 2010. <it>An. gambiae </it>specimens were screened for identification of species, molecular M and S forms and for the detection of the West African <it>kdr </it>(L1014F) as well as <it>ace-1<sup>R </sup></it>mutations using PCR techniques.</p> <p>Results</p> <p>The univariate logistic regression performed showed that <it>kdr </it>frequency has increased significantly during the three years in the intervention area and in the control area. Several factors (LLINs, IRS, mosquito coils, aerosols, use of pesticides for crop protection) could explain the selection of individual resistant <it>An. gambiae</it>. The <it>Kdr </it>resistance gene could not be the only mechanism of resistance observed in the Oueme region. The high susceptibility to bendiocarb is in agreement with a previous study conducted in Benin. However, the occurrence of <it>ace-1<sup>R </sup></it>heterozygous individuals even on sites far from IRS areas, suggests other factors may contribute to the selection of resistance other than those exerted by the vector control program.</p> <p>Conclusion</p> <p>The results of this study have confirmed that <it>An.gambiae </it>have maintained and developed the resistance to pyrethroids, but are still susceptible to bendiocarb. Our data clearly shows that selection of resistant individuals was caused by other insecticides than those used by the IRS and LLINs.</p

    Journal of Parasitology and Vector Biology Entomological baseline data on malaria transmission and susceptibility of Anopheles gambiae to insecticides in preparation for Indoor Residual Spraying (IRS) in Atacora, (Benin)

    No full text
    To implement indoor residual spraying (IRS), the department of Atacora was selected in Benin. Entomological surveys were performed before IRS implementation. Mosquitoes were sampled by Pyrethrum spray catch and were identified morphologically and by molecular methods. The Plasmodium falciparum circumsporozoite indices were measured by enzyme linked immunosorbent assay (ELISA). Molecular detection of pyrethroid knock down resistance and that of insensitive acetylcholinesterase were performed. Susceptibility status of Anopheles gambiae was determined using World Health Organization (WHO) bioassay tests to various insecticides. A. gambiae s.l. was the main species harvested in houses (81.71%) and A. gambiae s.s is practically the only member that was found. Both M and S forms were in sympatry, but the molecular S form was predominant (94.42%). A. gambiae s.l were susceptible to bendiocarb but fully resistant to organochlorine (DDT), permethrin and deltamethrin. Entomological inoculation rate vectors (EIR) was 6 infectious bites per man per month on average during the study period. The average of kdr and Ace-1 allelic frequency were 78 and 3%, respectively. A. gambiae s.l is characterized by a high endophilic behavior in Atacora, which is a good criterion for IRS implementation. The susceptibility to bendiocarb add to the low Ace-1 mutation frequency found in A. gambiae populations could lead to the use of bendiocarb for IRS

    Mixed-function oxidases and esterases associated with permethrin, deltamethrin and bendiocarb resistance in Anopheles gambiae s.l. in the south-north transect Benin, West Africa

    Get PDF
    BACKGROUND: Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. The current study aimed at an exploring the involvement of detoxifying enzymes in the insecticide phenotype resistance in Anopheles gambiae s.l.from Benin, in order to guide future malaria vector control interventions. METHODS: Larvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Oueme, Atacora and Alibori provinces. CDC susceptibility tests were conducted on unfed female mosquitoes aged 2–5 days old. CDC bioassays were performed with stock solutions of permethrin (21.5 Όg per bottle), deltamethrin (12.5 Όg per bottle) and bendiocarb (12.5 Όg per bottle). CDC biochemical assays using synergists were also conducted to assess the metabolic resistance. RESULTS: The susceptibility of Anopheles gambiae Agbalilame and Kandi populations to permethrin and deltamethrin respectively, increased significantly when synergized by PBO, suggesting an implication of mono-oxygenases in resistance of Anopheles gambiae s.l. to pyrethroid. Esterases may play a role in bendiocarb resistance in Anopheles gambiae Tanguieta. CONCLUSION: Synergists partially restored susceptibility to pyrethroid and carbamate insecticides and might help mitigate the impact of vector resistance in Anopheles gambiae Agbalilame, Kandi and Tanguieta populations. However, additional vector control tools are needed to further impact on malaria transmission in such settings.This will improve the implementation and management of future control programs against this important malaria vector in Benin and in Africa in general
    corecore