28 research outputs found

    Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger is generated in a mezzanine on the board, the waveform stored in the capacitor array is subsequently digitized with a low speed (33 MHz) ADC and transferred via the FPGA-based Gigabit Ethernet to a data acquisition system. Both a low power consumption (2.64 W per channel) and high speed sampling with a bandwidth of >>300 MHz have been achieved. In addition, in order to increase the dynamic range of the readout we adopted a two gain system achieving from 0.2 up to 2000 photoelectrons in total. We finalized the board design for the first LST and proceeded to mass production. Performance of produced boards are being checked with a series of quality control (QC) tests. We report the readout board specifications and QC results.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    Quality Control of High-Speed Photon Detectors

    No full text
    High-speed-photon detectors are some of the most important tools for observations of high energy cosmic rays. As technologies of photon detectors and their read-out electronics improved rapidly, the time resolution of some cosmic ray detectors became better than one nanosecond. To utilize such devices effectively, calibrations using a short-pulse light source are necessary. We have developed a pulsed laser of 80 picosecond width and adjustable peak intensity up to 100 mW. This pulsed laser is composed of a simple electric circuit and a laser diode. Details of this pulsed laser and its application for quality controls of photon detectors are reported in this contribution

    Quality Control of High-Speed Photon Detectors

    Get PDF
    High-speed-photon detectors are some of the most important tools for observations of high energy cosmic rays. As technologies of photon detectors and their read-out electronics improved rapidly, the time resolution of some cosmic ray detectors became better than one nanosecond. To utilize such devices effectively, calibrations using a short-pulse light source are necessary. We have developed a pulsed laser of 80 picosecond width and adjustable peak intensity up to 100 mW. This pulsed laser is composed of a simple electric circuit and a laser diode. Details of this pulsed laser and its application for quality controls of photon detectors are reported in this contribution

    Chemical Composition of Ultra-High Energy Cosmic Rays Observed by AGASA

    No full text
    We have observed ultra-high energy cosmic rays above the Greisen-Zatsepin-Kuz\u27min cut-off energy by Akeno Giant Air Shower Array. Their chemical composition is a key discriminator of origin models. In the present work, we estimate the average composition by an analysis of muons in air showers with AIRES+QGSJET simulation. The data matches the prediction for light hadron primaries and no indication has been found for a gamma-ray dominance
    corecore