75 research outputs found

    Activation of Natural Killer Cells and Dendritic Cells upon Recognition of a Novel CD99-like Ligand by Paired Immunoglobulin-like Type 2 Receptor

    Get PDF
    Paired receptors that consist of highly related activating and inhibitory receptors are widely involved in the regulation of the immune system. Here, we report a mouse orthologue of the human activating paired immunoglobulin-like type 2 receptor (PILR) β, which was cloned from a cDNA library of natural killer (NK) cells based on its ability to associate with the DAP12 signaling adaptor protein. The activating PILRβ was expressed not only on NK cells but also on dendritic cells and macrophages. Furthermore, we have identified a novel CD99-like molecule as a ligand for the activating PILRβ and inhibitory PILRα receptors. Transcripts of PILR ligand are present in many tissues, including some T cell lines. Cells expressing the PILR ligand specifically activated NK cells and dendritic cells that express the activating PILRβ. Our findings reveal a new regulatory mechanism of innate immunity by PILR and its CD99-like ligand

    NKG2D-mediated Natural Killer Cell Protection Against Cytomegalovirus Is Impaired by Viral gp40 Modulation of Retinoic Acid Early Inducible 1 Gene Molecules

    Get PDF
    Natural killer (NK) cells play a critical role in the innate immune response against cytomegalovirus (CMV) infections. Although CMV encodes several gene products committed to evasion of adaptive immunity, viral modulation of NK cell activity is only beginning to be appreciated. A previous study demonstrated that the mouse CMV m152-encoded gp40 glycoprotein diminished expression of ligands for the activating NK cell receptor NKG2D on the surface of virus-infected cells. Here we have defined the precise ligands that are affected and have directly implicated NKG2D in immune responses to CMV infection in vitro and in vivo. Murine CMV (MCMV) infection potently induced transcription of all five known retinoic acid early inducible 1 (RAE-1) genes (RAE-1α, RAE-1β, RAE-1δ, RAE-1ɛ, and RAE-1γ), but not H-60. gp40 specifically down-regulated the cell surface expression of all RAE-1 proteins, but not H-60, and diminished NK cell interferon γ production against CMV-infected cells. Consistent with previous findings, a m152 deletion mutant virus (Δm152) was less virulent in vivo than the wild-type Smith strain of MCMV. Treatment of BALB/c mice with a neutralizing anti-NKG2D antibody before infection increased titers of Δm152 virus in the spleen and liver to levels seen with wild-type virus. These experiments demonstrate that gp40 impairs NK cell recognition of virus-infected cells through disrupting the RAE-1–NKG2D interaction

    Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-α/β Gene Induction

    Get PDF
    AbstractInduction of the interferon (IFN)-α/β gene transcription in virus-infected cells is an event central to innate immunity. Mice lacking the transcription factor IRF-3 are more vulnerable to virus infection. In embryonic fibroblasts, virus-induced IFN-α/β gene expression levels are reduced and the spectrum of the IFN-α mRNA subspecies altered. Furthermore, cells additionally defective in IRF-7 expression totally fail to induce these genes in response to infections by any of the virus types tested. In these cells, a normal profile of IFN-α/β mRNA induction can be achieved by coexpressing both IRF-3 and IRF-7. These results demonstrate the essential and distinct roles of the two factors, which together ensure the transcriptional efficiency and diversity of IFN-α/β genes for the antiviral response

    NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases

    Full text link
    In activated mouse natural killer (NK) cells, the NKG2D receptor associates with two intracellular adaptors, DAP10 and DAP12, which trigger phosphatidyl inositol 3 kinase (PI3K) and Syk family protein tyrosine kinases, respectively. Here we show that cytotoxicity, but not cytokine production, is triggered by NKG2D in activated NK cells lacking either DAP12 or the Syk family members Syk and ZAP70. Inhibition of PI3K blocks this cytotoxicity, suggesting that the DAP10-PI3K pathway is sufficient to initiate NKG2D-mediated killing of target cells. Our results highlight signaling divergence in the effector functions of NKG2D and indicate that alternative associations between a receptor and its adaptors may provide a single receptor with a dual 'on-switch', giving mouse NK cells more choices through which to trigger cytotoxicity

    Comparison of CD163+ Macrophages and CD206+ Cells in Lesional Skin of CD30+ Lymphoproliferative Disorders of Lymphomatoid Papulosis and Primary Cutaneous Anaplastic Large-cell Lymphoma.

    No full text
    CD30+ lymphoproliferative disorders represent a spectrum of diseases from lymphomatoid papulosis (LyP) to primary cutaneous anaplastic large-cell lymphoma (PCALCL) (1, 2). LyP is characterized by recurrent papulonodular lesions, which undergo spontaneous regression (1, 2). Survival is unaffected by LyP, but patients are at risk of a second cutaneous or lymphoid malignancy (1). PCALCL has a favourable prognosis with a 5-year survival rate between 76% and 96%. In this report, we used immunohistochemical (IHC) staining of LyP type A and PCALCL specimens to examine for macrophage markers as well as dendritic cell (DC)-specific markers and their functional markers
    corecore