214 research outputs found

    The ALTO project at IPN Orsay

    Get PDF
    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. Thereafter, the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL and CERN groups.Comment: 14 pages, pdf file, International School-Seminar on Heavy-Ion Physics 7 (2002

    Two-Step Model of Fusion for Synthesis of Superheavy Elements

    Get PDF
    A new model is proposed for fusion mechanisms of massive nuclear systems where so-called fusion hindrance exists. The model describes two-body collision processes in an approaching phase and shape evolutions of an amalgamated system into the compound nucleus formation. It is applied to 48^{48}Ca-induced reactions and is found to reproduce the experimental fusion cross sections extremely well, without any free parameter. Combined with the statistical decay theory, residue cross sections for the superheavy elements can be readily calculated. Examples are given.Comment: 4 pages, 4 figure

    Systematics of Fission Barriers in Superheavy Elements

    Get PDF
    We investigate the systematics of fission barriers in superheavy elements in the range Z = 108-120 and N = 166-182. Results from two self-consistent models for nuclear structure, the relativistic mean-field (RMF) model as well as the non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts lower barriers than most Skyrme interactions. In particular the fission isomers are predicted too low by the RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values around Z = 110, N = 180 and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac

    Future of superheavy element research: Which nuclei could be synthesized within the next few years?

    Full text link
    Low values of the fusion cross sections and very short half-lives of nuclei with Z>>120 put obstacles in synthesis of new elements. Different nuclear reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and neutron capture), which could be used for the production of new isotopes of superheavy (SH) elements, are discussed in the paper. The gap of unknown SH nuclei, located between the isotopes which were produced earlier in the cold and hot fusion reactions, can be filled in fusion reactions of 48^{48}Ca with available lighter isotopes of Pu, Am, and Cm. Cross sections for the production of these nuclei are predicted to be rather large, and the corresponding experiments can be easily performed at existing facilities. For the first time, a narrow pathway is found to the middle of the island of stability owing to possible β+\beta^+-decay of SH isotopes which can be formed in ordinary fusion reactions of stable nuclei. Multi-nucleon transfer processes at near barrier collisions of heavy (and very heavy, U-like) ions are shown to be quite realistic reaction mechanism allowing us to produce new neutron enriched heavy nuclei located in the unexplored upper part of the nuclear map. Neutron capture reactions can be also used for the production of the long-living neutron rich SH nuclei. Strong neutron fluxes might be provided by pulsed nuclear reactors and by nuclear explosions in laboratory conditions and by supernova explosions in nature. All these possibilities are discussed in the paper.Comment: An Invited Plenary Talk given by Valeriy I. Zagrebaev at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    alpha-decay chains of Z=114, A=289 and Z=118, A=293 in the relativistic mean-field model

    Full text link
    A comparison of calculated and experimental Q_alpha values of superheavy even-even nuclei and a few selected odd-N nuclei is presented in the framework of the relativistic mean-field model with the parameterization NL-Z2. Blocking effects are found to be important for a proper description of Q_alpha of odd mass nuclei. The model gives a good overall description of the available experimental data. The mass and charge assignment of the recently measured decay chains from Dubna and Berkeley is in agreement with the predictions of the model. The analysis of the new data does not allow a final conclusion about the location of the expected island of spherical doubly-magic superheavy nuclei.Comment: 4 pages REVTeX, 4 eps figures, accepted for publication in Phys. Rev.

    Charge density distributions and related form factors in neutron-rich light exotic nuclei

    Full text link
    Charge form factors corresponding to proton density distributions in exotic nuclei, such as 6,8^{6,8}He, 11^{11}Li, 17,19^{17,19}B and 14^{14}Be are calculated and compared. The results can be used as tests of various theoretical models for the exotic nuclei structure in possible future experiments using a colliding electron-exotic nucleus storage ring. The result of such a comparison would show the effect of the neutron halo or skin on the proton distributions in exotic nuclei.Comment: 11 pages, 4 figures, to be published in International Journal of Modern Physics

    Identification of new transitions and mass assignments of levels in 143153^{143-153}Pr

    Full text link
    The previously reported levels assigned to 151,152,153Pr have recently been called into question regarding their mass assignment. The above questioned level assignments are clarified by measuring g-transitions tagged with A and Z in an in-beam experiment in addition to the measurements from 252Cf spontaneous fission (SF) and establish new spectroscopic information from N=84N=84 to N=94N=94 in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from the spontaneous fission of 252Cf by using Gammasphere and also from the measurement of the prompt g-rays in coincidence with isotopically-identified fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced using 238U beams on a 9Be target at energies around the Coulomb barrier. The g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated spectra were combined to unambiguously assign the various transitions and levels in 151,152,153Pr and other isotopes. New transitions and bands in 145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences and A and Z gated g-g spectra. The transitions and levels previously assigned to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions previously assigned to 152Pr are now assigned to 151Pr on the basis of the (A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new band with 7 new transitions in 153Pr are identified from the g-g-g-g coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are also reported in 143-146Pr. New levels of 145,147-153Pr have been established, reliable mass assignments of the levels in 151,152,153Pr have been reported and new transitions have been identified in 143-146Pr showing the new avenues that are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.

    Dynamic study on fusion reactions for 40,48^{40,48}Ca+90,96^{90,96}Zr around Coulomb barrier

    Full text link
    By using the updated improved Quantum Molecular Dynamics model in which a surface-symmetry potential term has been introduced for the first time, the excitation functions for fusion reactions of 40,48^{40,48}Ca+90,96^{90,96}Zr at energies around the Coulomb barrier have been studied. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr have been reproduced remarkably well without introducing any new parameters. The fusion cross sections for the neutron-rich fusion reactions of 48^{48}Ca+90,96^{90,96}Zr around the Coulomb barrier are predicted to be enhanced compared with a non-neutron-rich fusion reaction. In order to clarify the mechanism of the enhancement of the fusion cross sections for neutron-rich nuclear fusions, we pay a great attention to study the dynamic lowering of the Coulomb barrier during a neck formation. The isospin effect on the barrier lowering is investigated. It is interesting that the effect of the projectile and target nuclear structure on fusion dynamics can be revealed to a certain extent in our approach. The time evolution of the N/Z ratio at the neck region has been firstly illustrated. A large enhancement of the N/Z ratio at neck region for neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
    corecore