113 research outputs found

    The rate of mass loss and variations in the wind from the Be star delta Centauri

    Get PDF
    Copernicus ultraviolet scans of the Be star delta Centauri obtained in 1976 and 1979, show a significant variation in the Si III lambda 1206 profile, The strong asymmetry that was present in 1976 had disappeared by 1979. The Si IV lambda 1400 doublet was also asymmetric in 1976, but was not observed in 1979. A quantitative fit of the line shapes to theoretical wind profiles shows that the mass-loss rate in 1976 was 2 x 10 to the minus 8th power/yr, and that the rate of mass loss in Si III was at least one order of magnitude less in 1979. It is not possible to determine whether the variation represented an overall change in the lass-loss rate, or whether it was due to a change in the ionization balance. The profile fitting procedure resulted in the adoption of assumed underlying photospheric Si III and Si IV profiles, and the equivalent widths measured from these profiles are most consistent with T sub eff between 30,000 and 35,000 K, somewhat hotter than implied by the spectral classification normally assigned to this star. The ultraviolet photospheric line widths, coupled wit published theoretical analyses of rotational gravitational darkening, imply an intrinsic equatorial velocity of about 310 km/sec and an angle of inclination of the rotational axis to the line of sight of i is less than or equal to 44 deg

    The dynamics of Abell 2634

    Get PDF
    We have amassed a large sample of velocity data for the cluster of galaxies Abell 2634 which contains the wide-angle tail (WAT) radio source 3C 465. Robust indicators of location and scale and their confidence intervals are used to determine if the cD galaxy, containing the WAT, has a significant peculiar motion. We find a cD peculiar radial velocity of 219 plus or minus 98 km s(exp -1). Further dynamical analyses, including substructure and normality tests, suggest that A 2634 is an unrelaxed cluster whose radio source structure may be bent by the turbulent gas of a recent cluster-subcluster merger

    Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64

    Get PDF
    We present a moderate-resolution (~20 km/s) spectrum of the mini broad-absorption-line QSO PG1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional spectra at longer wavelengths were also obtained with the HST and ground-based telescopes. Broad absorption is present on the blue wings of CIII 977, Ly-beta, OVI 1032,1038, Ly-alpha, NV 1238,1242, SiIV 1393,1402, and CIV 1548,1450. The absorption profile can be fitted with five components at velocities of ~ -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The OVI emission feature is very weak, and the OVI/Lyalpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10^21 cm^-2, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.Comment: 23 pages, Latex, 5 figure

    Toward Equations of Galactic Structure

    Full text link
    We find that all classes of galaxies, ranging from disks to spheroids and from dwarf spheroidals to brightest cluster galaxies, lie on a two dimensional surface within the space defined by the logarithms of the half-light radius, r_e, mean surface brightness within r_e, I_e, and internal velocity, V^2 = (1/2)v_c^2 + sigma^2, where v_c is the rotational velocity and sigma is the velocity dispersion. If these quantities are expressed in terms of kpc, L_solar/pc^2, and km/s, then log r_e - log V^2 + log I_e + log Upsilon_e + 0.8 = 0, where we provide a fitting function for Upsilon_e, the mass-to-light ratio within r_e in units of M_solar/L_solar, that depends only on V and I_e. The scatter about this surface for our heterogeneous sample of 1925 galaxies is small (< 0.1 dex) and could be as low as ~ 0.05 dex, or 10%. This small scatter has three possible implications for how gross galactic structure is affected by internal factors, such as stellar orbital structure, and by external factors, such as environment. These factors either 1) play no role beyond generating some of the observed scatter, 2) move galaxies along the surface, or 3) balance each other to maintain this surface as the locus of galactic structure equilibria. We cast the behavior of Upsilon_e in terms of the fraction of baryons converted to stars, eta, and the concentration of those stars within the dark matter halo, xi = R_{200}/r_e. We derive eta = 1.9 x 10^{-5} (L/L^*) Upsilon_* V^{-3} and xi = 1.4 V/r_e. Finally, we present and discuss the distributions of eta and xi for the full range of galaxies. For systems with internal velocities comparable to that of the Milky Way (149 < V < 163 km/s), eta = 0.14 +- 0.05, and xi is, on average, ~ 5 times greater for spheroids than for disks. (Abridged)Comment: submitted to Ap

    FUSE Observations of Intrinsic Absorption in the Seyfert 1 Galaxy Mrk 509

    Get PDF
    We present far-ultraviolet spectra of the Seyfert 1 galaxy Mrk 509 obtained in 1999 November with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of ~20 km/s. The spectrum shows a blue continuum, broad OVI 1032,1038 emission, and a broad CIII 977 emission line. Superposed on these emission components, we resolve associated absorption lines of OVI 1032,1038, CIII 977, and Lyman lines through Lzeta. Seven distinct kinematic components are present, spanning a velocity range of -440 to +170 km/s relative to the systemic velocity. The absorption is clustered in two groups, one centered at -370m km/s and another at the systemic velocity. The blue-shifted cluster may be associated with the extended line emission visible in deep images of Mrk 509 obtained by Phillips et al. Although several components appear to be saturated, they are not black at their centers. Partial covering or scattering permits ~7% of the broad-line or continuum flux to be unaffected by absorption. Of the multiple components, only one has the same ionization state and column density as highly ionized gas that produces the OVII and OVIII ionization edges in X-ray spectra of Mrk 509. This paper will appear in a special issue of Astrophysical Journal Letters devoted to the first scientific results from the FUSE mission.Comment: To appear in the Astrophysical Journal (Letters). 4 pages, 3 color PostScript figures. Figures are best viewed and printed in color. Added acknowledgment that this is one of many papers to be published in a special issue of ApJL devoted to the first scientific results from the FUSE missio

    Merger Dynamics of the Pair of Galaxy Clusters -- A399 and A401

    Full text link
    Convincing evidence of a past interaction between two rich clusters A399 and A401 was recently found by the X-ray imaging observations. In this paper we examine the structure and dynamics of this pair of galaxy clusters. A mixture-modeling algorithm has been applied to obtain a robust partition into two clusters, which allows us to discuss the virial mass and velocity distribution for each cluster. Assuming that these two clusters follow a linear orbit and they have once experienced a close encounter, we model the binary cluster as a two-body system. As a result, four gravitationally bound solutions are obtained. The recent X-ray observations seem to favor a scenario in which the two clusters with a true separation of 5.4h−15.4h^{-1} Mpc are currently expanding at 583 km/s along the direction with a projection angle of 67.5 degree, and they will reach a maximum extent of 5.65h−15.65h^{-1} Mpc in about 1.0h−11.0h^{-1} Gyr.Comment: 11 pages, including 6 EPS figures and 4 tables, uses chjaa.cls, Accepted by the ChJA
    • …
    corecore