1 research outputs found
New Insights into the Photocatalytic Properties of RuO<sub>2</sub>/TiO<sub>2</sub> Mesoporous Heterostructures for Hydrogen Production and Organic Pollutant Photodecomposition
Photocatalytic activities of mesoporous
RuO<sub>2</sub>/TiO<sub>2</sub> heterojunction nanocomposites for
organic dye decomposition
and H<sub>2</sub> production by methanol photoreforming have been
studied as a function of the RuO<sub>2</sub> loading in the 1ā10
wt % range. An optimum RuO<sub>2</sub> loading was evidenced for both
kinds of reaction, the corresponding nanocomposites showing much higher
activities than pure TiO<sub>2</sub> and commercial reference P25.
Thus, 1 wt % RuO<sub>2</sub>/TiO<sub>2</sub> photocatalyst led to
the highest rates for the degradation of cationic (methylene blue)
and anionic (methyl orange) dyes under UV light illumination. To get
a better understanding of the mechanisms involved, a comprehensive
investigation on the photogenerated charge carriers, detected by electron
spin resonance (ESR) spectroscopy in the form of O<sup>ā</sup>, Ti<sup>3+</sup>, and O<sub>2</sub><sup>ā</sup> trapping
centers, was performed. Along with the key role of superoxide paramagnetic
species in the photodecomposition of organic dyes, ESR measurements
revealed a higher amount of trapped holes in the case of the 1 wt
% RuO<sub>2</sub>/TiO<sub>2</sub> photocatalyst that allowed rationalizing
the trends observed. On the other hand, a maximum average hydrogen
production rate of 618 Ī¼mol h<sup>ā1</sup> was reached
with 5 wt % RuO<sub>2</sub>/TiO<sub>2</sub> photocatalyst to be compared
with 29 Ī¼mol h<sup>ā1</sup> found without RuO<sub>2</sub>. Favorable band bending at the RuO<sub>2</sub>/TiO<sub>2</sub> interface
and the key role of photogenerated holes have been proposed to explain
the highest activity of the RuO<sub>2</sub>/TiO<sub>2</sub> photocatalysts
for hydrogen production. These findings open new avenues for further
design of RuO<sub>2</sub>/TiO<sub>2</sub> nanostructures with a fine-tuning
of the RuO<sub>2</sub> nanoparticle distribution in order to reach
optimized vectorial charge distribution and enhanced photocatalytic
hydrogen production rates