2 research outputs found
Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline
Intense laser-driven proton pulses, inherently broadband and highly
divergent, pose a challenge to established beamline concepts on the path to
application-adapted irradiation field formation, particularly for 3D. Here we
experimentally show the successful implementation of a highly efficient (50%
transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous
(8.5% uniformity laterally and in depth) volumetric dose distribution
(cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7
Gy via multi-energy slice selection from the broad input spectrum. The
experiments have been conducted at the Petawatt beam of the Dresden Laser
Acceleration Source Draco and were aided by a predictive simulation model
verified by proton transport studies. With the characterised beamline we
investigated manipulation and matching of lateral and depth dose profiles to
various desired applications and targets. Using a specifically adapted dose
profile, we successfully performed first proof-of-concept laser-driven proton
irradiation studies of volumetric in-vivo normal tissue (zebrafish embryos) and
in-vitro tumour tissue (SAS spheroids) samples.Comment: Submitted to Scientific Report
Data publication: Efficient laser-driven proton and Bremsstrahlung generation from cluster-assembled foam targets
Archiving of raw and results data and scripts as describef in the associated pape