10 research outputs found

    Endogenously produced nonclassical vitamin D hydroxy-metabolites act as "biased" agonists on VDR and inverse agonists on RORα and RORγ

    Get PDF
    The classical pathway of vitamin D activation follows the sequence D3→25(OH)D3→1,25(OH)(2)D3 with the final product acting on the receptor for vitamin D (VDR). An alternative pathway can be started by the action of CYP11A1 on the side chain of D3, primarily producing 20(OH)D3, 22(OH)D3, 20,23(OH)(2)D3, 20,22(OH)(2)D3 and 17,20,23(OH)(3)D3. Some of these metabolites are hydroxylated by CYP27B1 at C1α, by CYP24A1 at C24 and C25, and by CYP27A1 at C25 and C26. The products of these pathways are biologically active. In the epidermis and/or serum or adrenals we detected 20(OH)D3, 22(OH)D3, 20,22(OH)(2)D3, 20,23(OH)(2)D3, 17,20,23(OH)(3)D3, 1,20(OH)(2)D3, 1,20,23(OH)(3)D3, 1,20,22(OH)(3)D3, 20,24(OH)(2)D3, 1,20,24(OH)(3)D3, 20,25(OH)(2)D3, 1,20,25(OH)(3)D3, 20,26(OH)(2)D3 and 1,20,26(OH)(3)D3. 20(OH)D3 and 20,23(OH)(2)D3 are non-calcemic, while the addition of an OH at C1α confers some calcemic activity. Molecular modeling and functional assays show that the major products of the pathway can act as “biased” agonists for the VDR with high docking scores to the ligand binding domain (LBD), but lower than that of 1,25(OH)(2)D3. Importantly, cell based functional receptor studies and molecular modeling have identified the novel secosteroids as inverse agonists of both RORα and RORγ receptors. Specifically, they have high docking scores using crystal structures of RORα and RORγ LBDs. Furthermore, 20(OH)D3 and 20,23(OH)(2)D3 have been tested in cell model that expresses a Tet-on RORα or RORγ vector and a RORE-LUC reporter (ROR-responsive element), and in a mammalian 2-hybrid model that test interactions between an LBD-interacting LXXLL-peptide and the LBD of RORα/γ. These assays demonstrated that the novel secosteroids have ROR-antagonist activities that were further confirmed by the inhibition of IL17 promoter activity in cells overexpressing RORα/γ. In conclusion, endogenously produced novel D3 hydroxy-derivatives can act both as “biased” agonists of the VDR and/or inverse agonists of RORα/γ. We suggest that the identification of large number of endogenously produced alternative hydroxy-metabolites of D3 that are biologically active, and of possible alternative receptors, may offer an explanation for the pleiotropic and diverse activities of vitamin D, previously assigned solely to 1,25(OH)(2)D3 and VDR

    Beach ridge systems: archives for Holocene coastal events?

    No full text
    Holocene coastal evolution has been extensively studied by workers from various earth science disciplines, particularly sedimentologists and geomorphologists. Some of these studies have focused on the history of regional sea-level changes in various ocean basins and the mechanisms – such as eustasy, glacio-isostasy, sediment compaction, neotectonics and climatic forces – involved in such changes. Although beach ridges have been used to identify steps in coastal evolution, only in a few cases have beach ridge systems been investigated with respect to event histories (for example, cyclones and tsunamis). Beach ridge systems, however, belong to the most promising geo-archives for the study of climate change and sea-level variations over the Holocene, as well as for deciphering event histories. This paper presents examples of some studies in this field, in relation to a global overview of beach ridge systems and their morphological characteristics

    Pharmacogenetics of the g protein-coupled receptors

    No full text
    Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible

    Immunology of β-Cell Destruction

    No full text

    Immunology of β-Cell Destruction

    No full text

    The Recent Studies on DNA Analysis in the Horse.

    No full text

    MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis

    No full text

    Vesicoureteral Reflux and Renal Scarring in Children

    No full text
    corecore