31 research outputs found

    Phytomanagement and Remediation of Cu-Contaminated Soils by High Yielding Crops at a Former Wood Preservation Site: Sunflower Biomass and Ionome

    Get PDF
    This long-term field trial aimed at remediating a Cu-contaminated soil to promote crop production and soil functions at a former wood preservation site. Twenty-eight field plots with total topsoil Cu in the 198–1,169 mg kg−1 range were assessed. Twenty-four plots (OMDL) were amended in 2008 with a compost (made of pine bark chips and poultry manure, OM, 5% w/w) and dolomitic limestone (DL, 0.2%), and thereafter annually phytomanaged with a sunflower—tobacco crop rotation. In 2013, one untreated plot (UNT) was amended with a green waste compost (GW, 5%) whereas 12 former OMDL plots received a second compost dressing using this green waste compost (OM2DL, 5%). In 2011, one plot was amended with the Carmeuse basic slag (CAR, 1%) and another plot with a P-spiked Linz-Donawitz basic slag (PLD,1%). Thus six soil treatments, i.e., UNT, OMDL, OM2DL, GW, CAR, and PLD, were cultivated in 2016 with sunflower (Helianthus annuus L. cv Ethic). Shoots were harvested and their ionome analyzed. Athigh soil Cu contamination, the 1M NH4NO3-extractable vs. total soil Cu ratio ranked in decreasing order: Unt (2.35)>CAR (1.02), PLD (0.83)>GW (0.58), OMDL (0.44), OM2DL (0.37), indicating a lower Cu extractability in the compost-amended plots. Allamendments improved the soil nutrient status and the soil pH, which was slightly acidicin the UNT soil. Total organic C and N and extractable P contents peaked in the OM2DL soils. Both OMDL and OM2DL treatments led to higher shoot DW yields and Cu removals than the GW, CAR, and PLD treatments. Shoot DW yields decreased as total topsoil Cu rose in the OMDL plots, on the contrary to the OM2DL plots, demonstrating the benefits to repeat compost application after 5 years. Shoot Cu concentrations notably of OMDL and OM2DL plants fitted into their common range and can be used by biomass Mench et al. Phytomanagement of Cu-Contaminated Soils processing technologies and oilseeds as well. In overall, there is a net gain in soil physico-chemical properties and underlying soil functions

    Rhizofiltration of a Bordeaux mixture effluent in pilot-scale constructed wetland using Arundo donax L. coupled with potential Cu-ecocatalyst production

    No full text
    Rinsing tanks of crop sprayers produce significant volumes of Cu-rich Bordeaux mixture effluents (BME) that can be treated by rhizofiltration in constructed wetlands (CWs). A pilot-scale CW (6 × 600 L) was developed to jointly rhizofiltrate such BME, produce Cu-rich root mat for ecocatalysis and provide usable shoot biomass with low Cu concentration. Three CW units were unplanted control (Ctrl) while three others were planted with Arundo donax L. (Ad) in floating racks. The rhizofiltration was carried out during 30 days in the early growing season. Total Cu concentration in the BME was 4.4 mg Cu L−1. Copper removal peaked within the 48 first hours after Bordeaux mixture addition in the Ad and Ctrl units (i.e. 92 and 81% respectively). The BME Cu concentration met the requirement for indirect discharge of chemical industry effluents (i.e. 0.5 mg Cu L−1) at T48h (0.4 ± 0.2) and T21days (0.4 ± 0.1) for the Ad and Ctrl units, respectively. At day 30, in the Ad units, Cu concentration remaining in the water and distributed between A. donax roots, shoots was respectively 3.5, 33 and 0.5% of the initial Cu input. In the Ctrl units, Cu remaining in water was low (7%) and Cu removal (93%) could be partly explained by its immobilization in the Cu-rich biofilm (i.e. 207210 ± 18516 mg Cu kg−1) coating the vat wall. Foliar chlorophyll (i.e. a, b and total) and carotenoid contents decreased at day 30 but root and shoot dry weight (DW) yields increased by 23% and 47% per Ad unit, respectively. The shoot Cu concentration remained in the common range (i.e. 3–20 mg Cu kg−1) while the root Cu concentration reached 623 ± 140 mg kg−1 allowing 786 mg Cu removal by the root mat. Higher Cu concentration in BME or subsequent repetitions of treatment cycle must be tested to achieve at least 1000 mg Cu kg−1 DW in roots (threshold value for Cu-ecocatalyst) whereas the biofilm role must deserve more attention

    Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil

    No full text
    In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil
    corecore