172 research outputs found
Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23
Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model
The development of a solar powered residential heating and cooling system
A solar energy collector design is disclosed that would be efficient for both energy transfer and fluid flow, based upon extensive parametric analyses. Thermal design requirements are generated for the energy storage systems which utilizes sensible heat storage in water. Properly size system components (including the collector and storage) and a practical, efficient total system configuration are determined by means of computer simulation of system performance
Development of SMAP Mission Cal/Val Activities
The Soil Moisture Active Passive (SMAP) mission is a NASA directed mission to map global land surface soil moisture and freeze-thaw state. Instrument and mission details are shown. The key SMAP soil moisture product is provided at 10 km resolution with 0.04cubic cm/cubic cm accuracy. The freeze/thaw product is provided at 3 km resolution and 80% frozen-thawed classification accuracy. The full list of SMAP data products is shown
Polar ozone
The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed
L band push broom microwave radiometer: Soil moisture verification and time series experiment Delmarva Peninsula
The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research
Electronics Shielding and Reliability Design Tools
It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements
A Reformulation of the Hoop Conjecture
A reformulation of the Hoop Conjecture based on the concept of trapped circle
is presented. The problems of severe compactness in every spatial direction,
and of how to superpose the hoops with the surface of the black hole, are
resolved. A new conjecture concerning "peeling" properties of
dynamical/trapping horizons is propounded. A novel geometric Hoop inequality is
put forward. The possibility of carrying over the results to arbitrary
dimension is discussed.Comment: 6 pages, no figures. New references included, typos corrected,
explanatory comments added. Much shorter version, in order to match EPL
length restrictions. To be published in EP
The value of the world's ecosystem services and natural capital
The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 18 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which in outside the market) in estimated to be in the range of US33 trillion per year. Because of the nature of the uncertainties, thin must be considered a minimum estimate. Global gross national product total is around US$18 trillion per year
Influence of a cattle access point on temporal changes in stream turbidity
Unrestricted cattle access can have negative impacts on aquatic systems, including increases in stream water turbidity and suspended sediment levels. Many agri-environmental policies require the exclusion of livestock from waterbodies; however, data that quantify these impacts are scarce. This study used sensors measuring turbidity, a proxy for suspended sediment, together with motion-detecting cameras, to examine the influence of cattle in-stream activity on water quality in north-east Ireland. Two nephelometers, which automatically measured and logged turbidity, were placed upstream and downstream of a cattle access point in July 2017, while cameras were used to record cattle behaviour. A second deployment was made during February 2018 when cattle were absent. During low flows, frequent short-lived increases in turbidity were recorded at the downstream nephelometer only. These coincided with cattle accessing the water. There was a significant positive relationship between the longitudinal differences (downstream − upstream) in turbidity and the total number of cattle accessing the stream. There was no relationship between turbidity and stream discharge in July (when cattle were present), although that period was dominated by lower flow levels, with only 2 days in which discharge increased above baseflow. In contrast, there were no similar short-lived increases in turbidity in February 2018 when cattle were absent from the field, but there was a strong significant positive relationship between stream discharge and turbidity. These results highlight the consequences of cattle access for water column turbidity levels, particularly during periods of low streamflow, and therefore inform future agri-environmental policy in Ireland
The neural engine: a reprogrammable low power platform for closed-loop optogenetics
Brain-machine Interfaces (BMI) hold great potential for treating neurological disorders such as epilepsy. Technological progress is allowing for a shift from open-loop, pacemaker-class, intervention towards fully closed-loop neural control systems. Low power programmable processing systems are therefore required which can operate within the thermal window of 2° C for medical implants and maintain long battery life. In this work, we developed a low power neural engine with an optimized set of algorithms which can operate under a power cycling domain. By integrating with custom designed brain implant chip, we have demonstrated the operational applicability to the closed-loop modulating neural activities in in-vitro brain tissues: the local field potentials can be modulated at required central frequency ranges. Also, both a freely-moving non-human primate (24-hour) and a rodent (1-hour) in-vivo experiments were performed to show system long-term recording performance. The overall system consumes only 2.93mA during operation with a biological recording frequency 50Hz sampling rate (the lifespan is approximately 56 hours). A library of algorithms has been implemented in terms of detection, suppression and optical intervention to allow for exploratory applications in different neurological disorders. Thermal experiments demonstrated that operation creates minimal heating as well as battery performance exceeding 24 hours on a freely moving rodent. Therefore, this technology shows great capabilities for both neuroscience in-vitro/in-vivo applications and medical implantable processing units
- …