45 research outputs found

    Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study

    Get PDF
    We have investigated the effect of the number p of components on the dynamics of phase separation in two-dimensional symmetric multicomponent fluids. In contrast to concentrated two-dimensional binary fluids, where the growth dynamics is controlled by the coupling of the velocity held to the order parameter, leading to large growth-exponent values, the dynamics in multicomponent fluids (p = 3, 4) is found to follow a t(1/3) growth law, where t is time, which we relate to a long-wavelength evaporation-condensation process. These findings, which are proposed to be consequences of the compact domain structure persisting in multicomponent fluids, imply that hydrodynamic modes do not affect the dynamics of the phase separation in these systems

    Molecular dynamics simulations of phase separation in the presence of surfactants

    Get PDF
    The dynamics of phase separation in two-dimensional binary mixtures diluted by surfactants is studied by means of molecular dynamics simulations. In contrast to pure binary systems, characterized by an algebraic time dependence of the average domain size, we find that systems containing surfactants exhibit nonalgebraic, slow dynamics. The average domain size eventually saturates at a value inversely proportional to the surfactant concentration. We also find that phase separation in systems with different surfactant concentrations follow a crossover scaling form. Finally, although these systems do not fully phase separate, we observe a dynamical scaling which is independent of the surfactant concentration. The results of these simulations are in general in agreement with previous Langevin simulations [Laradji, Guo, Grant, and Zuckermann, J. Phys. A 44, L629 (1991)] and a theory of Ostwald ripening [Yao and Laradji, Phys. Rev. E 47, 2695 (1993)]. © 1994 The American Physical Society
    corecore