168 research outputs found
Chiral ground states of ferroelectric liquid crystals
Ferroelectric nematic liquid crystals are formed by achiral molecules with
large dipole moments. Its three-dimensional orientational order is universally
described as unidirectionally polar. We demonstrate that the ground state of
ferroelectric nematic unconstrained by externally imposed alignment directions
is chiral, with left- and right-hand twists of polarization. Although the
helicoidal deformations and defect walls separating domains of opposite
handedness increase the elastic energy, the twists reduce the electrostatic
energy and become weaker when the material is doped with ions. The study shows
that the polar orientational order of molecules could trigger chirality in the
soft matter with no chemically induced chiral centers.Comment: 24 pages, 13 figure
Defects in liquid crystals: surface and interfacial anchoring effects
Abstract This review discusses static properties of topological defects, such as line defectsdisclinations and dislocations, point defects -hedgehogs (monopoles) and boojums; focal conic domains and tilt grain boundaries in basic types of liquid crystals: uniaxial and biaxial nematics, cholesterics and smectics. We present the most popular experimental techniques to study defects in soft matter, namely, polarizing microscopy and fluorescence confocal polarizing microscopy. The role of bounding surfaces and the so-called surface anchoring that lifts the degeneracy of the order parameter in stability of defects is discussed. Because of the surface anchoring, the equilibridm state of a bounded liquid crystal might contain topological defects. For example, nematic bubbles nucleating during the first-order phase transition from the isotropic melt, might contain point defects (hedgehogs and boojums) and disclination loops when their size is larger than the anchoring extrapolation length defined by the ratio of the Frank elastic constant of the director curvature and the (polar) anchoring coefficient. Depending on the strength of surface anchoring, an edge dislocation might be expelled from the system with ID positional order or be stabilized in the bulk. Furthermore, focal conic domains play the role of "surface anchoring facets" by providing the necessary orientation of the liquid crystal director at the smectic boundary. Introduction Liquid crystals are endowed with continuous symmetries and physical prevalence of correlations of orientation over correlations of position and thus show rich and complex variety of topological defects. Defects in liquid crystals are of various dimensionalities, not only line defects, but also points, walls, and "configurations" (walls, topological solitons). In this review, we consider basic properties (mainly static) of defects in the simplest types of liquid crystals, nematics and smectics, mostly in relationship to the experimental studies and effects that the bounding surfaces have on defects. The experimental techniques of regular polarizing microscopy and more recent fluorescent confoca
Lassoing saddle splay and the geometrical control of topological defects
Systems with holes, such as colloidal handlebodies and toroidal droplets,
have been studied in the nematic liquid crystal (NLC) 4-cyano-4'-pentylbiphenyl
(5CB): both point and ring topological defects can occur within each hole and
around the system, while conserving the system's overall topological charge.
However, what has not been fully appreciated is the ability to manipulate the
hole geometry with homeotropic (perpendicular) anchoring conditions to induce
complex, saddle-like deformations. We exploit this by creating an array of
holes suspended in an NLC cell with oriented planar (parallel) anchoring at the
cell boundaries. We study both 5CB and a binary mixture of bicyclohexane
derivatives (CCN-47 and CCN-55). Through simulations and experiments, we study
how the bulk saddle deformations of each hole interact to create novel defect
structures, including an array of disclination lines, reminiscent of those
found in liquid crystal blue phases. The line locations are tunable via the NLC
elastic constants, the cell geometry, and the size and spacing of holes in the
array. This research lays the groundwork for the control of complex elastic
deformations of varying length scales via geometrical cues in materials that
are renowned in the display industry for their stability and easy
manipulability.Comment: 9 pages, 7 figures, 1 supplementary figur
Modeling planar degenerate wetting and anchoring in nematic liquid crystals
We propose a simple surface potential favoring the planar degenerate
anchoring of nematic liquid crystals, i.e., the tendency of the molecules to
align parallel to one another along any direction parallel to the surface. We
show that, at lowest order in the tensorial Landau-de Gennes order-parameter,
fourth-order terms must be included. We analyze the anchoring and wetting
properties of this surface potential. In the nematic phase, we find the desired
degenerate planar anchoring, with positive scalar order-parameter and some
surface biaxiality. In the isotropic phase, we find, in agreement with
experiments, that the wetting layer may exhibit a uniaxial ordering with
negative scalar order-parameter. For large enough anchoring strength, this
negative ordering transits towards the planar degenerate state
Landau levels of cold atoms in non-Abelian gauge fields
The Landau levels of cold atomic gases in non-Abelian gauge fields are
analyzed. In particular we identify effects on the energy spectrum and density
distribution which are purely due to the non-Abelian character of the fields.
We investigate in detail non-Abelian generalizations of both the Landau and the
symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric
gauges may be generated by means of realistically feasible lasers in a tripod
scheme.Comment: 13 pages, 9 figure
- …