4,455 research outputs found

    Sub-parsec-scale Accleration of the Radio Jet in the Powerful Radio Galaxy NGC 6251

    Get PDF
    In order to investigate the genesis of powerful radio jet, we have mapped the central 10 pc region of the nearby radio galaxy NGC 6251 with a 0.2 pc resolution using Very Long Baseline Interferometer (VLBI) at two radio frequencies, 5 GHz and 15 GHz, we have found the sub-parsec-scale counterjet for the first time in this radio galaxy. This discovery allows us to investigate the jet acceleration based on the relativistic beaming model.Comment: 7 pages with 7 figures. To appear in PASJ, 52, No. 5, Oct. 25, 200

    On time-local solvability of the Navier-Stokes equations in Besov spaces

    Get PDF
    A time-local solution is constructed for the Cauchy problem of the n­dimensional l'\avier-Stokes equations when the initial velocity belongs to Besov spaces of non positive order. The space contains L∞ in some exponents, so our solution may not decay at space infinity. In order to use iteration scheme we have to establish the Holder type inequality for estimating bilinear term by dividing the sum of Besov norm with respect to levels of frequency. Moreover, by regularizing effect our solutions belongs to L∞ for any positive time

    On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces

    Get PDF
    The locally-in-time solutions to the Navier-Stokes equations in H%-1(Rn ) are regular for t > 0. The spatial analyticity is established by deriving rate estimates of higher order derivatives of the solutions. The solutions or the initial velocities need not be small. The estimates also provide the decay estimate on derivatives for large time. Although the basic strategy to derive estimates is similar to our previous results with Y. Giga for Ln space, we are forced to apply several tools from harmonic analysis since our space 1{%-1 is more complicated

    Hydrodynamic Simulations of Counterrotating Accretion Disks

    Get PDF
    Hydrodynamic simulations have been used to study accretion disks consisting of counterrotating components with an intervening shear layer(s). Configurations of this type can arise from the accretion of newly supplied counterrotating matter onto an existing corotating disk. The grid-dependent numerical viscosity of our hydro code is used to simulate the influence of a turbulent viscosity of the disk. Firstly, we consider the case where the gas well above the disk midplane rotates with angular rate +\Omega(r) and that well below has the same properties but rotates with rate -\Omega(r). We find that there is angular momentum annihilation in a narrow equatorial boundary layer in which matter accretes supersonically with a velocity which approaches the free-fall velocity and the average accretion speed of the disk can be enormously larger than that for a conventional \alpha-disk rotating in one direction. Secondly, we consider the case of a corotating accretion disk for rr_t. In this case we observed, that matter from the annihilation layer lost its stability and propagated inward pushing matter of inner regions of the disk to accrete. Thirdly, we investigated the case where counterrotating matter inflowing from large radial distances encounters an existing corotating disk. Friction between the inflowing matter and the existing disk is found to lead to fast boundary layer accretion along the disk surfaces and to enhanced accretion in the main disk. These models are pertinent to the formation of counterrotating disks in galaxies and possibly in Active Galactic Nuclei and in X-ray pulsars in binary systems.Comment: LaTeX, 18 pages, to appear in Ap

    First-Principles Computation of YVO3; Combining Path-Integral Renormalization Group with Density-Functional Approach

    Full text link
    We investigate the electronic structure of the transition-metal oxide YVO3 by a hybrid first-principles scheme. The density-functional theory with the local-density-approximation by using the local muffin-tin orbital basis is applied to derive the whole band structure. The electron degrees of freedom far from the Fermi level are eliminated by a downfolding procedure leaving only the V 3d t2g Wannier band as the low-energy degrees of freedom, for which a low-energy effective model is constructed. This low-energy effective Hamiltonian is solved exactly by the path-integral renormalization group method. It is shown that the ground state has the G-type spin and the C-type orbital ordering in agreement with experimental indications. The indirect charge gap is estimated to be around 0.7 eV, which prominently improves the previous estimates by other conventional methods

    Affleck-Dine leptogenesis via multiscalar evolution in a supersymmetric seesaw model

    Full text link
    A leptogenesis scenario in a supersymmetric standard model extended with introducing right-handed neutrinos is reconsidered. Lepton asymmetry is produced in the condensate of a right-handed sneutrino via the Affleck-Dine mechanism. The LH_u direction develops large value due to a negative effective mass induced by the right-handed sneutrino condensate through the Yukawa coupling of the right-handed neutrino, even if the minimum during the inflation is fixed at the origin. The lepton asymmetry is nonperturbatively transfered to the LH_u direction by this Yukawa coupling.Comment: 19 pages, 3 figures. Revised version for publication. The model was modified to fix some problem
    • 

    corecore