225 research outputs found

    Mild and facile synthesis of multi-functional RAFT chain transfer agents

    Get PDF
    In this paper we will describe the synthesis and characterization of a series of novel chain transfer agents for application in reversible addition fragmentation chain transfer polymerization (RAFT). The facile and mild conditions used for the synthesis of these new chain transfer agents should allow for the application of these methods for the preparation of a wide range of multifunctional chain transfer agent species. Some initial polymerization data for these multifunctional chain transfer agents is also reported

    Strategies for preparing fluorescently labelled polymer nanoparticles

    Get PDF
    There is great interest in the use of fluorescent polymer nanoparticles as optical imaging agents. When designing and synthesising a fluorescent polymer nanoparticle imaging agent there is a large variety in both the particle formation and dye attachment strategies that can be pursued. In this mini-review we detail this range of possibilities, illustrating with examples from the literature, and highlighting particular advantages in each case. © 2014 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Efficient DNA-polymer coupling in organic solvents:a survey of amide coupling, Thiol-Ene and Tetrazine-Norbornene chemistries applied to conjugation of Poly(N-Isopropylacrylamide)

    Get PDF
    A range of chemistries were explored for the efficient covalent conjugation of DNA to poly(N-isopropylacrylamide) (poly(NIPAM)) in organic solvents. Amide coupling and thiol–ene Michael addition were found to be ineffective for the synthesis of the desired products. However, the inverse electron-demand Diels–Alder (DAinv) reaction between tetrazine (Tz) and norbornene (Nb) was found to give DNA–polymer conjugates in good yields (up to 40%) in organic solvents (N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone), and without the need for a catalyst. Methods for the synthesis of Tz-and Nb- functionalised DNA were developed, along with a post-polymerisation functionalisation strategy for the production of Tz-functionalised polymers

    The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior

    Get PDF
    Diblock copolymers containing the thermo-responsive sulfobetaine, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (DMAPS), were synthesized by the aqueous RAFT polymerization of DMAPS, followed by direct chain extension in hexafluoroisopropanol (HFIP) with methyl methacrylate (MMA). This was shown to give lower dispersity polymers than RAFT emulsion polymerization. The diblock copolymers self-assembled in water to form micelles, as analyzed by light scattering (LS) and transmission electron microscopy (TEM). Micelles formed from diblocks bearing a long PDMAPS block were shown to swell with temperature, rather than display a traditional UCST cloud point. This was due to the polymers retaining hydrophilicity, even at temperatures well below the UCST for the corresponding PDMAPS homopolymer, as shown by variable temperature NMR. This swelling behavior was utilized in the release of a hydrophobic dye in response to temperature. This approach has great potential for applications in controlled release whilst maintaining the structure of the carrier nanoparticles

    Precise tuning of polymeric fiber dimensions to enhance the mechanical properties of alginate hydrogel matrices

    Get PDF
    Hydrogels based on biopolymers, such as alginate, are commonly used as scaffolds in tissue engineering applications as they mimic the features of the native extracellular matrix (ECM). However, in their native state, they suffer from drawbacks including poor mechanical performance and a lack of biological functionalities. Herein, we have exploited a crystallization-driven self-assembly (CDSA) methodology to prepare well-defined one-dimensional micellar structures with controlled lengths to act as a mimic of fibrillar collagen in native ECM and improve the mechanical strength of alginate-based hydrogels. Poly(ε-caprolactone)-b-poly(methyl methacrylate)-b-poly(N, N-dimethyl acrylamide) triblock copolymers were self-assembled into 1D cylindrical micelles with precise lengths using CDSA epitaxial growth and subsequently combined with calcium alginate hydrogel networks to obtain nanocomposites. Rheological characterization determined that the inclusion of the cylindrical structures within the hydrogel network increased the strength of the hydrogel under shear. Furthermore, the strain at flow point of the alginate-based hydrogel was found to increase with nanoparticle content, reaching an improvement of 37% when loaded with 500 nm cylindrical micelles. Overall, this study has demonstrated that one-dimensional cylindrical nanoparticles with controlled lengths formed through CDSA are promising fibrillar collagen mimics to build ECM scaffold models, allowing exploration of the relationship between collagen fiber size and matrix mechanical properties

    The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior

    Get PDF
    Diblock copolymers containing the thermo-responsive sulfobetaine, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (DMAPS), were synthesized by the aqueous RAFT polymerization of DMAPS, followed by direct chain extension in hexafluoroisopropanol (HFIP) with methyl methacrylate (MMA). This was shown to give lower dispersity polymers than RAFT emulsion polymerization. The diblock copolymers self-assembled in water to form micelles, as analyzed by light scattering (LS) and transmission electron microscopy (TEM). Micelles formed from diblocks bearing a long PDMAPS block were shown to swell with temperature, rather than display a traditional UCST cloud point. This was due to the polymers retaining hydrophilicity, even at temperatures well below the UCST for the corresponding PDMAPS homopolymer, as shown by variable temperature NMR. This swelling behavior was utilized in the release of a hydrophobic dye in response to temperature. This approach has great potential for applications in controlled release whilst maintaining the structure of the carrier nanoparticles

    Degradable precision polynorbornenes via ring-opening metathesis polymerization

    Get PDF
    In an attempt to introduce monomer sequence control in a growing polynorbornene via ring-opening metathesis polymerization, we employ dioxepins to efficiently determine the location of the monomers on the macromolecule backbone. Owing to the acid-labile acetal group, dioxepins allow scission of the polymer at the point of the dioxepin insertion and thus provide an indirect way to determine the monomer location. Additionally, dioxepins are used as spacers in the synthesis of multiblock polynorbornenes that are readily cleavable to afford the individual polynorbornene blocks
    • …
    corecore