12 research outputs found

    A de novo CSDE1 variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents.

    Get PDF
    Funder: National Human Genome Research Institute; Id: http://dx.doi.org/10.13039/100000051Funder: Broad Institute; Id: http://dx.doi.org/10.13039/100013114Funder: Horizon 2020; Id: http://dx.doi.org/10.13039/100010661Funder: Muscular Dystrophy Canada; Id: http://dx.doi.org/10.13039/501100000223Funder: Evelyn Trust; Id: http://dx.doi.org/10.13039/501100004282Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530CSDE1 encodes the cytoplasmic cold shock domain-containing protein E1 (CSDE1), which is highly conserved across species and functions as an RNA-binding protein involved in translationally coupled mRNA turnover. CSDE1 displays a bidirectional role: promoting and repressing the translation of RNAs but also increasing and decreasing the abundance of RNAs. Preclinical studies highlighted an involvement of CSDE1 in different forms of cancer. Moreover, CSDE1 is highly expressed in human embryonic stem cells and plays a role in neuronal migration and differentiation. A genome-wide association study suggested CSDE1 as a potential autism-spectrum disorder risk gene. A multicenter next generation sequencing approach unraveled likely causative heterozygous variants in CSDE1 in 18 patients, identifying a new autism spectrum disorder-related syndrome consisting of autism, intellectual disability, and neurodevelopmental delay. Since then, no further patients with CSDE1 variants have been reported in the literature. Here, we report a 9.5-year-old girl from a consanguineous family of Turkish origin suffering from profound delayed speech and motor development, moderate intellectual disability, neurologic and psychiatric symptoms as well as hypoplasia of corpus callosum and mildly reduced brain volume on brain magnetic resonance imaging associated with a recurrent de novo mutation in CSDE1 (c.367C > T; p.R123*) expanding the phenotypical spectrum associated with pathogenic CSDE1 variants

    Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement.

    Get PDF
    Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530Recessive variants in WASHC4 are linked to intellectual disability complicated by poor language skills, short stature, and dysmorphic features. The protein encoded by WASHC4 is part of the Wiskott-Aldrich syndrome protein and SCAR homolog family, co-localizes with actin in cells, and promotes Arp2/3-dependent actin polymerization in vitro. Functional studies in a zebrafish model suggested that WASHC4 knockdown may also affect skeletal muscles by perturbing protein clearance. However, skeletal muscle involvement has not been reported so far in patients, and precise biochemical studies allowing a deeper understanding of the molecular etiology of the disease are still lacking. Here, we report two siblings with a homozygous WASHC4 variant expanding the clinical spectrum of the disease and provide a phenotypical comparison with cases reported in the literature. Proteomic profiling of fibroblasts of the WASHC4-deficient patient revealed dysregulation of proteins relevant for the maintenance of the neuromuscular axis. Immunostaining on a muscle biopsy derived from the same patient confirmed dysregulation of proteins relevant for proper muscle function, thus highlighting an affliction of muscle cells upon loss of functional WASHC4. The results of histological and coherent anti-Stokes Raman scattering microscopic studies support the concept of a functional role of the WASHC4 protein in humans by altering protein processing and clearance. The proteomic analysis confirmed key molecular players in vitro and highlighted, for the first time, the involvement of skeletal muscle in patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    Phenotype and genetic analysis of data collected within the first year of NeuroDev

    Get PDF
    Genetic association studies have made significant contributions to our understanding of the etiology of neurodevelopmental disorders (NDDs). However, these studies rarely focused on the African continent. The NeuroDev Project aims to address this diversity gap through detailed phenotypic and genetic characterization of children with NDDs from Kenya and South Africa. We present results from NeuroDev’s first year of data collection, including phenotype data from 206 cases and clinical genetic analyses of 99 parent-child trios. Most cases met criteria for global developmental delay/intellectual disability (GDD/ID, 80.3%). Approximately half of the children with GDD/ID also met criteria for autism. Analysis of exome-sequencing data identified a pathogenic or likely pathogenic variant in 13 (17%) of the 75 cases from South Africa and 9 (38%) of the 24 cases from Kenya. Data from the trio pilot are publicly available, and the NeuroDev Project will continue to develop resources for the global genetics community

    Pathogenic variants in SMARCA1 cause an X-linked neurodevelopmental disorder modulated by NURF complex composition

    Get PDF
    Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H ( SMARCA5) or SNF2L ( SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum

    Ehlers-Danlos/myopathy overlap syndrome caused by a large de novo deletion in COL12A1

    No full text
    Autosomal dominant and recessive mutations in COL12A1 cause the Ehlers-Danlos/myopathy overlap syndrome. Here, we describe a boy with fetal hypokinesia, severe neonatal weakness, striking hyperlaxity, high arched palate, retrognathia, club feet, and pectus excavatum. His motor development was initially delayed but muscle strength improved with time while hyperlaxity remained very severe causing recurrent joint dislocations. Using trio exome sequencing and a copy number variation (CNV) analysis tool, we identified an in-frame de novo heterozygous deletion of the exons 45 to 54 in the COL12A1 gene. Collagen XII immunostaining on cultured skin fibroblasts demonstrated intracellular retention of collagen XII, supporting the pathogenicity of the deletion. The phenotype of our patient is slightly more severe than other cases with dominantly acting mutations, notably with the presence of fetal hypokinesia. This case highlights the importance of CNVs analysis in the COL12A1 gene in patients with a phenotype suggesting Ehlers-Danlos/myopathy overlap syndrome
    corecore