12 research outputs found

    Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H<sup>+</sup>, K<sup>+</sup>-ATPases in Pancreatic Cancer and Stellate Cells

    Get PDF
    Pancreatic duct cells are equipped with acid/base transporters important for exocrine secretion. Pancreatic ductal adenocarcinoma (PDAC) cells may utilize such transporters to acidify extracellular tumor microenvironment, creating a niche favoring cell proliferation, fibrosis and resistance to chemotherapy&mdash;all contributing to the notoriously bad prognosis of this disease. Here, we report that gastric and non-gastric H+, K+-ATPases (coded by ATP4A and ATP12A) are overexpressed in human and murine pancreatic cancer and that we can target them specifically with proton pump inhibitors (PPIs) and potassium-competitive acid blockers (P-CABs) in in vitro models of PDAC. Focusing on pantoprazole, we show that it significantly reduced human cancer cell proliferation by inhibiting cellular H+ extrusion, increasing K+ conductance and promoting cyclin D1-dependent cell cycle arrest and preventing STAT3 activation. Pantoprazole also decreased collagen secretion from pancreatic stellate cells. Importantly, in vivo studies show that pantoprazole treatment of tumor-bearing mice reduced tumor size, fibrosis and expression of angiogenic markers. This work provides the first evidence that H+, K+-ATPases contribute to PDAC progression and that these can be targeted by inhibitors of these pumps, thus proving a promising therapeutic strategy

    Advances in imaging RNA in plants

    No full text
    Increasing evidence shows that many RNAs are targeted to specific locations within cells, and that RNA-processing pathways occur in association with specific subcellular structures. Compartmentation of mRNA translation and RNA processing helps to assemble large RNA protein complexes, while RNA targeting allows local protein synthesis and the asymmetric distribution of transcripts during cell polarisation. In plants, intercellular RNA trafficking also plays an additional role in plant development and pathogen defence. Methods that allow the visualisation of RNA sequences within a cellular context, and preferably at subcellular resolution, can help to answer important questions in plant cell and developmental biology. Here, we summarise the approaches currently available for localising RNA in vivo and address the specific limitations inherent with plant systems.</p

    Live-cell imaging of viral RNA genomes using a Pumilio-based reporter

    No full text
    We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N- or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.</p

    <i>Lactococcus </i>cell envelope proteases enable lactococcal growth in minimal growth media supplemented with high molecular weight proteins of plant and animal origin

    No full text
    Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs

    Human P2X7 receptor variants Gly150Arg and Arg276His polymorphisms have differential effects on risk association and cellular functions in pancreatic cancer

    No full text
    Abstract Background The purinergic P2X7 receptor (P2X7R) plays an important role in the crosstalk between pancreatic stellate cells (PSCs) and cancer cells, thus promoting progression of pancreatic ductal adenocarcinoma (PDAC). Single nucleotide polymorphisms (SNPs) in the P2X7R have been reported for several cancers, but have not been explored in PDAC. Materials and methods Blood samples from PDAC patients and controls were genotyped for 11 non-synonymous SNPs in P2X7R and a risk analysis was performed. Relevant P2X7R-SNP GFP variants were expressed in PSCs and cancer cells and their function was assayed in the following tests. Responses in Ca2+ were studied with Fura-2 and dye uptake with YO-PRO-1. Cell migration was monitored by fluorescence microscopy. Released cytokines were measured with MSD assay. Results Risk analysis showed that two SNPs 474G>A and 853G>A (rs28360447, rs7958316), that lead to the Gly150Arg and Arg276His variants, had a significant but opposite risk association with PDAC development, protecting against and predisposing to the disease, respectively. In vitro experiments performed on cancer cells and PSCs expressing the Gly150Arg variant showed reduced intracellular Ca2+ response, fluorescent dye uptake, and cell migration, while the Arg276His variant reduced dye uptake but displayed WT-like Ca2+ responses. As predicted, P2X7R was involved in cytokine release (IL-6, IL-1β, IL-8, TNF-α), but the P2X7R inhibitors displayed varied effects. Conclusion In conclusion, we provide evidence for the P2X7R SNPs association with PDAC and propose that they could be considered as potential biomarkers

    Additional file 1 of Human P2X7 receptor variants Gly150Arg and Arg276His polymorphisms have differential effects on risk association and cellular functions in pancreatic cancer

    No full text
    Additional file 1: Fig. S1. Haploview analysis of pairwise LD (linkage disequilibrium) between P2X7R polymorphisms; Fig. S2 Increased ATP-induced dye uptake in PANC-1, PSCs and HEK293 over-expressing P2X7R+GFP WT compared to non-transfected cells (CTR); Fig. S3. Effect of P2X7R SNPs on cell survival; Fig. S4. Cytokines quantification in PSCs lysates
    corecore