15,750 research outputs found

    Deducing spectroscopic factors from wave-function asymptotics

    Full text link
    In a coupled-channel model, we explore the effects of coupling between configurations on the radial behavior of the wave function and, in particular, on the spectroscopic factor (SF) and the asymptotic normalization coefficient (ANC). We evaluate the extraction of a SF from the ratio of the ANC of the coupled-channel model to that of a single-particle approximation of the wave function. We perform this study within a core + n collective model, which includes two states of the core that connect by a rotational coupling. To get additional insights, we also use a simplified model that takes a delta function for the coupling potential. Calculations are performed for 11Be. Fair agreement is obtained between the SF inferred from the single-particle approximation and the one obtained within the coupled-channel models. Significant discrepancies are observed only for large coupling strength and/or large admixture, that is, a small SF. This suggests that reliable SFs can be deduced from the wave-function asymptotics when the structure is dominated by one configuration, that is, for a large SF.Comment: Title correcte

    On complexified analytic Hamiltonian flows and geodesics on the space of Kahler metrics

    Full text link
    In the case of a compact real analytic symplectic manifold M we describe an approach to the complexification of Hamiltonian flows [Se, Do1, Th1] and corresponding geodesics on the space of Kahler metrics. In this approach, motivated by recent work on quantization, the complexified Hamiltonian flows act, through the Grobner theory of Lie series, on the sheaf of complex valued real analytic functions, changing the sheaves of holomorphic functions. This defines an action on the space of (equivalent) complex structures on M and also a direct action on M. This description is related to the approach of [BLU] where one has an action on a complexification M_C of M followed by projection to M. Our approach allows for the study of some Hamiltonian functions which are not real analytic. It also leads naturally to the consideration of continuous degenerations of diffeomorphisms and of Kahler structures of M. Hence, one can link continuously (geometric quantization) real, and more general non-Kahler, polarizations with Kahler polarizations. This corresponds to the extension of the geodesics to the boundary of the space of Kahler metrics. Three illustrative examples are considered. We find an explicit formula for the complex time evolution of the Kahler potential under the flow. For integral symplectic forms, this formula corresponds to the complexification of the prequantization of Hamiltonian symplectomorphisms. We verify that certain families of Kahler structures, which have been studied in geometric quantization, are geodesic families.Comment: final versio

    Scalar field phase dynamics in preheating

    Get PDF
    We study the model of a massive inflaton field ϕ\phi coupled to another scalar filed χ\chi with interaction term g2ϕ2χ2g^2\phi^2\chi^2 for the first stage of preheating. We obtain the the behavior of the phase in terms of the iteration of a simple family of circle maps. When expansion of the universe is taken into account the qualitative behavior of the phase and growth number evolution is reminiscent of the behavior found in the case without expansion.Comment: 4 pages, 4 figures, LaTeX; submitted to the Proceedings of Eleventh Marcel Grossmann Meetin

    Comparing non-perturbative models of the breakup of neutron-halo nuclei

    Full text link
    Breakup reactions of loosely-bound nuclei are often used to extract structure and/or astrophysical information. Here we compare three non-perturbative reaction theories often used when analyzing breakup experiments, namely the continuum discretized coupled channel model, the time-dependent approach relying on a semiclassical approximation, and the dynamical eikonal approximation. Our test case consists of the breakup of 15C on Pb at 68 MeV/nucleon and 20 MeV/nucleon.Comment: 8 pages, 6 figures, accepted for publication in Phys. Rev.

    Large N WZW Field Theory Of N=2 Strings

    Get PDF
    We explore the quantum properties of self-dual gravity formulated as a large NN two-dimensional WZW sigma model. Using a non-trivial classical background, we show that a (2,2)(2,2) space-time is generated. The theory contains an infinite series of higher point vertices. At tree level we show that, in spite of the presence of higher than cubic vertices, the on-shell 4 and higher point functions vanish, indicating that this model is related with the field theory of closed N=2 strings. We examine the one-loop on-shell 3-point amplitude and show that it is ultra-violet finite.Comment: This is the final version. By editorial mistake at Phys.Lett.B an older version was published in prin

    Asymptotic normalization of mirror states and the effect of couplings

    Full text link
    Assuming that the ratio between asymptotic normalization coefficients of mirror states is model independent, charge symmetry can be used to indirectly extract astrophysically relevant proton capture reactions on proton-rich nuclei based on information on stable isotopes. The assumption has been tested for light nuclei within the microscopic cluster model. In this work we explore the Hamiltonian independence of the ratio between asymptotic normalization coefficients of mirror states when deformation and core excitation is introduced in the system. For this purpose we consider a phenomenological rotor + N model where the valence nucleon is subject to a deformed mean field and the core is allowed to excite. We apply the model to 8Li/8B, 13C/13N, 17O/17F, 23Ne/23Al, and 27Mg/27P. Our results show that for most studied cases, the ratio between asymptotic normalization coefficients of mirror states is independent of the strength and multipolarity of the couplings induced. The exception is for cases in which there is an s-wave coupled to the ground state of the core, the proton system is loosely bound, and the states have large admixture with other configurations. We discuss the implications of our results for novae.Comment: 8 pages, 2 figures, submitted to PR

    Geometric quantization, complex structures and the coherent state transform

    Full text link
    It is shown that the heat operator in the Hall coherent state transform for a compact Lie group KK is related with a Hermitian connection associated to a natural one-parameter family of complex structures on T∗KT^*K. The unitary parallel transport of this connection establishes the equivalence of (geometric) quantizations of T∗KT^*K for different choices of complex structures within the given family. In particular, these results establish a link between coherent state transforms for Lie groups and results of Hitchin and Axelrod, Della Pietra and Witten.Comment: to appear in Journal of Functional Analysi
    • …
    corecore