1,483 research outputs found

    Multi-cursor multi-user mobile interaction with a large shared display

    Get PDF
    When using a mobile device to control a cursor on a large shared display, the interaction must be carefully planned to match the environment and purpose of the systems use. We describe a ‘democratic jukebox’ system that revealed five recommendations that should be considered when designing this type of interaction relating to providing feedback to the user; how to represent users in a multi-cursor based system; where people tend to look and their expectation of how to move their cursor; the orientation of screens and the social context; and, the use of simulated users to give the real users a sense that they are engaging with a greater audience

    Outside the Wall: Hydrodynamics of Type I Supernovae Interacting with a Partially Swept-Up Circumstellar Medium

    Full text link
    Explaining the observed diversity of supernovae (SNe) and the physics of explosion requires knowledge of their progenitor stars, which can be obtained by constraining the circumstellar medium (CSM). Models of the SN ejecta colliding with CSM are necessary to infer the structure of the CSM and tie it back to a progenitor model. Recent SNe I revealed CSM concentrated at a distance r1016r\sim10^16 cm, for which models of SN interaction are extremely limited. In this paper, we assume the concentrated region is a "wall" representing swept-up material, and unswept material lies outside the wall. We simulate one-dimensional hydrodynamics of SNe Ia & Ib impacting 300 unique CSM configurations using RT1D, which captures the Rayleigh-Taylor instability. We find that the density ratio between the wall and ejecta -- denoted A0A_0 or "wall height" -- is key, and higher walls deviate more from self-similar evolution. Functional fits accounting for A0A_0 are presented for the forward shock radius evolution. We show that higher walls have more degeneracy between CSM properties in the deceleration parameter, slower shocks, deeper-probing reverse shocks, slower shocked ejecta, less ejecta mass than CSM in the shock, and more mixing of ejecta into the CSM at early times. We analyze observations of SN 2014C (Type Ib) and suggest that it had a moderately high wall (10<A0<20010 < A_0 < 200) and wind-like outer CSM. We also postulate an alternate interpretation for the radio data of SN 2014C, that the radio rise occurs in the wind rather than the wall. Finally, we find that hydrodynamic measurements at very late times cannot distinguish the presence of a wall, except perhaps as an anomalously wide shock region.Comment: 17 pages, 13 figures, accepted to Ap

    Rates and Properties of Strongly Gravitationally Lensed Supernovae and their Host Galaxies in Time-Domain Imaging Surveys

    Get PDF
    Supernovae that are strongly gravitationally lensed (gLSNe) by galaxies are powerful probes of astrophysics and cosmology that will be discovered systematically by next-generation wide-field, high-cadence imaging surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Survey Telescope (LSST). Here we use pixel-level simulations that include dust, observing strategy, and multiple supernova subtypes to forecast the rates and properties of gLSNe that ZTF and LSST will find. Applying the resolution-insensitive discovery strategy of Goldstein et al. (2018), we forecast that ZTF (LSST) can discover 0.02 (0.79) 91bg-like, 0.17 (5.92) 91T-like, 1.22 (47.84) Type Ia, 2.76 (88.51) Type IIP, 0.31 (12.78) Type IIL, and 0.36 (15.43) Type Ib/c gLSNe per year. We also forecast that the surveys can discover at least 3.75 (209.32) Type IIn gLSNe per year, for a total of at least 8.60 (380.60) gLSNe per year under fiducial observing strategies. ZTF gLSNe have a median zs=0.9z_s=0.9, zl=0.35z_l=0.35, μtot=30\mu_\mathrm{tot}=30, Δtmax=10\Delta t_\mathrm{max}= 10 days, min(θ)=0.25\min(\theta)= 0.25^{\prime\prime}, and Nimg=4N_\mathrm{img} = 4. LSST gLSNe are less compact and less magnified, with a median zs=1.0z_s=1.0, zl=0.4z_l=0.4, μtot6\mu_\mathrm{tot}\approx6, Δtmax=25\Delta t_\mathrm{max} = 25 days, min(θ)=0.6\min(\theta)=0.6^{\prime\prime}, and Nimg=2N_\mathrm{img} = 2. As the properties of lensed host galaxy arcs provide critical information for lens mass modeling, we develop a model of the supernova--host galaxy connection and use it to simulate realistic images of the supernova--host--lens systems. We find that the vast majority of gLSN host galaxies will be multiply imaged, enabling detailed constraints on lens models with sufficiently deep high-resolution imaging taken after the supernova has faded. We release the results of our simulations to the public as catalogs at this URL: http://portal.nersc.gov/project/astro250/glsne/.Comment: 57 pages, 66 equations, 36 figures, 4 tables, Submitted to ApJS, comments welcome, v2 replaced some figures with rasterized versions to reduce load on PDF viewer

    Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline

    Get PDF
    A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting follow-up observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using high-performance computing, efficient database, and machine learning algorithms, this pipeline manages to reliably deliver transient candidates within ten minutes of images being taken. Our experience in using high performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in near future.Comment: 18 pages, 6 figures, accepted for publication in PAS

    Low Hubble Constant from Type Ia Supernovae by van den Bergh's Method

    Get PDF
    An interesting way to calibrate the absolute magnitudes of remote Type Ia supernovae (SNe Ia) that are well out in the Hubble flow, and thus determine the value of the Hubble constant, H_0, has been introduced by van den Bergh. His approach relies on calculations of the peak absolute magnitudes and broad--band colors for SN Ia explosion models. It does not require any corrections for extinction by interstellar dust, and no SNe Ia are excluded on grounds of peculiarity. Within the last few years distances have been determined to the parent galaxies of six SNe Ia by means of Cepheid variables. Cepheid--based distances also have become available for three other SNe Ia if one is willing to use the distance to a galaxy in the same group in lieu of the distance to the parent galaxy itself. Here we determine the value of H_0 in a way that is analogous to that of van den Bergh, but now using Cepheid--based distances instead of calculated light curves. We obtain H_0 = 55 km/s/Mpc. This value, with Lambda=0 and Omega=1, corresponds to a cosmic expansion time of 12 Gyr, which is consistent with several recent determinations of the ages of globular clusters.Comment: Latex, 4 pages, 1 table, 1 figure, Submitted to Nature March 28, 1996. PostScript version available at http://www.nhn.ou.edu/~nugent

    Could There Be A Hole In Type Ia Supernovae?

    Full text link
    In the favored progenitor scenario, Type Ia supernovae arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et. al. show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.Comment: 11 pages, 9 figures, submitted to Ap

    Against the Wind: Radio Light Curves of Type Ia Supernovae Interacting with Low-Density Circumstellar Shells

    Full text link
    For decades, a wide variety of observations spanning the radio through optical and on to the x-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, as shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves, and identify a fiducial set of models that all obey a common evolution and can be used to generate radio light curves for interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the non-detections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and resultant radio light curves.Comment: 15 pages, 11 figures, ApJ accepte
    corecore