44 research outputs found

    Strategic defense initiative impacts on manned Mars missions

    Get PDF
    Research conducted on a strategic defense system with space based elements may provide key components of systems necessary for Manned Mars Missions. Three areas of impact are space logistics, space power, and supporting systems. These areas are discussed briefly

    The Clementine Bistatic Radar Experiment

    Get PDF
    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole

    L-VRAP-a lunar volatile resources analysis package for lunar exploration

    Get PDF
    The Lunar Volatile Resources Analysis Package (L-VRAP) has been conceived to deliver some of the objectives of the proposed Lunar Lander mission currently being studied by the European Space Agency. The purpose of the mission is to demonstrate and develop capability; the impetus is very much driven by a desire to lay the foundations for future human exploration of the Moon. Thus, LVRAP has design goals that consider lunar volatiles from the perspective of both their innate scientific interest and also their potential for in situ utilisation as a resource. The device is a dual mass spectrometer system and is capable of meeting the requirements of the mission with respect to detection, quantification and characterisation of volatiles. Through the use of appropriate sampling techniques, volatiles from either the regolith or atmosphere (exosphere) can be analysed. Furthermore, since L-VRAP has the capacity to determine isotopic compositions, it should be possible for the instrument to determine the sources of the volatiles that are found on the Moon (be they lunar per se, extra-lunar, or contaminants imparted by the mission itself
    corecore