26 research outputs found

    Hemispheric lateralisation and immune function: A systematic review of human research

    Get PDF
    This is the post-print version of the final paper published in Journal of Neuroimmunology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Past studies examined relationships between hemispheric lateralisation (HL) and immune system functioning. However, there has been no up-dated systematic review of this research area. This article reviews relevant published studies, evaluates study quality and effect sizes. Eleven studies were selected: three revealing a relationship between weaker left hemisphere function and poorer immune function, three describing a relationship between weaker right hemisphere function and stronger immune functioning, and five describing both relationships. Mean effect-size of the studies was r = 0.536 (range 0.280–0.866). Collectively, studies point at left-HL and stronger immunity relationships. Limitations, mechanisms and clinical implications are discussed

    The relation between hemispheric lateralisation and measures of immune competence and adherence in Human Immunodeficiency Virus Type 1 (HIV-1)

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - Copyright © 2012 Sumner et al

    Ready Exerciser One: Effects of Music and Virtual Reality on Cycle Ergometer Exercise

    Get PDF
    © 2020 The Authors. Objectives Physical inactivity remains a major global health concern, and researchers have been encouraged to explore the role of technology in the promotion of physical activity. Technologies that deliver audio‐visual stimuli are frequently applied in the exercise domain. However, there is a paucity of research that examines the efficacy of modern virtual reality (VR) technology in this context. We investigated the effects of VR and music on affective, perceptual, enjoyment, and cardiac responses to aerobic‐type exercise. Design A fully counterbalanced, within‐subjects design was employed. Methods A convenience sample of recreationally active adult volunteers (N = 24) completed a 12‐min protocol during which they exercised under music, VR, VR‐with‐music, and control conditions. Results Analyses indicated a Condition × Time interaction for affective valence and perceived activation. Moreover, a main effect of condition emerged for state attention and perceived enjoyment. The VR and VR‐with‐music conditions elicited the most positive affective valence, highest levels of perceived activation, greatest number of dissociative thoughts, and most exercise enjoyment. Differences between these two conditions were negligible across the breadth of dependent variables. Conclusions The present findings illustrate the efficacy of modern VR technology in the exercise context, applied both with and without musical accompaniment. Additional research is required to assess the degree to which the findings are replicable among sedentary or ageing segments of the population. Given the emerging support pertaining to a positive relationship between affective responses and exercise adherence, VR technology should be considered as a means by which to promote an enjoyable exercise experience

    Effects of Transcranial Direct Current Stimulation (tDCS) on Chronic Pain in Spinal Cord Injured Patients

    Get PDF
    Introduction: Pain following spinal cord injury (SCI) is notoriously difficult to manage and often refractory to treatment. Novel approaches, such as non-invasive brain stimulation, targeting central mechanisms associated with chronic pain, have shown early promise as a safe treatment in various patient groups, including spinal cord injury. To date the number of small clinical trials using non-invasive brain stimulation to treat chronic pain in SCI have produced mixed results (1). We report here the findings of a UK based trial examining the effects of anodal Transcranial Direct Current Stimulation (tDCS) administration on pain in spinal injury patients. Methods: Sixteen spinal injury patients from the National Spinal Injury Centre, Stoke Mandeville Hospital, Aylesbury, UK participated in a single centre, double blind randomized control trial. Patients were randomly allocated to either the active (n=8) or sham (n=8) treatment groups. tDCS was administered by electrodes with anode placement over the dominant M1 and the cathode electrode over the contralateral supra-orbit scalp area. Subjects received either active (2mA anodal current) or sham tDCS for 20 minutes daily treatment for 5 consecutive days with the dose based on previously reported chronic pain studies in spinal cord injury patients. A mixed ANOVA was used to evaluate both tDCS treatment and time effects on validated assessment measures for pain and depression up to 2 weeks following treatment intervention. Results: No adverse effects of the treatment were observed in this study, nor were there any significant differences between groups in rating perception of stimulation. While treatment appeared to have reduced group pain scores on a visual analogue scale (VAS), there were no statistically significant differences between active and sham treatment groups when re-examined at the two week follow up. Conclusions: There was a reduction in self-assessed VAS pain score in our small group of SCI patients during treatment in both the sham and active tDCS and at two weeks post treatment. However, our study appears to indicate only a placebo-like effect of tDCS on chronic pain in SCI and no effect attributable to the active anodal stimulation over motor cortex. We also did not observe any significant effects over time or treatment on neuropathic pain when assessed with validated measures. We observed trends of non-significant reduction in some of self-assessed pain scores of measures, however, these are inconclusive. Studies of clinical efficacy of pain treatment by tDCS in spinal cord injury should therefore be conducted on a larger scale, and with a longer follow up period to address the limited evidence available
    corecore