182 research outputs found
Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells
<p>Abstract</p> <p>Background</p> <p>In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair.</p> <p>Objective</p> <p>The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis.</p> <p>Methods</p> <p>Curosurf<sup>® </sup>and Alveofact<sup>® </sup>were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation.</p> <p>Results</p> <p>Curosurf<sup>® </sup>resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact<sup>® </sup>exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models.</p> <p>Conclusion</p> <p>This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.</p
Surfactant phosphatidylcholine half-life and pool size measurements in premature baboons developing bronchopulmonary dysplasia
Because minimal information is available about surfactant metabolism in
bronchopulmonary dysplasia, we measured half-lives and pool sizes of
surfactant phosphatidylcholine in very preterm baboons recovering from
respiratory distress syndrome and developing bronchopulmonary dysplasia,
using stable isotopes, radioactive isotopes, and direct pool size
measurements. Eight ventilated premature baboons received (2)H-DPPC
(dipalmitoyl phosphatidylcholine) on d 5 of life, and radioactive
(14)C-DPPC with a treatment dose of surfactant on d 8. After 14 d, lung
pool sizes of saturated phosphatidylcholine were measured. Half-life of
(2)H-DPPC (d 5) in tracheal aspirates was 28 +/- 4 h (mean +/- SEM).
Half-life of radioactive DPPC (d 8) was 35 +/- 4 h. Saturated
phosphatidylcholine pool size measured with stable isotopes on d 5 was 129
+/- 14 micro mol/kg, and 123 +/- 11 micro mol/kg on d 14 at autopsy.
Half-lives were comparable to those obtained at d 0 and d 6 in our
previous baboon studies. We conclude that surfactant metabolism does not
change during the early development of bronchopulmonary dysplasia, more
specifically, the metabolism of exogenous surfactant on d 8 is similar to
that on the day of birth. Surfactant pool size is low at birth, increases
after surfactant therapy, and is kept constant during the first 2 wk of
life by endogenous surfactant synthesis. Measurements with stable isotopes
are comparable to measurements with radioactive tracers and measurements
at autopsy
Azithromycin in the extremely low birth weight infant for the prevention of Bronchopulmonary Dysplasia: a pilot study
<p>Abstract</p> <p>Background</p> <p>Azithromycin reduces the severity of illness in patients with inflammatory lung disease such as cystic fibrosis and diffuse panbronchiolitis. Bronchopulmonary dysplasia (BPD) is a pulmonary disorder which causes significant morbidity and mortality in premature infants. BPD is pathologically characterized by inflammation, fibrosis and impaired alveolar development. The purpose of this study was to obtain pilot data on the effectiveness and safety of prophylactic azithromycin in reducing the incidence and severity of BPD in an extremely low birth weight (≤ 1000 grams) population.</p> <p>Methods</p> <p>Infants ≤ 1000 g birth weight admitted to the University of Kentucky Neonatal Intensive Care Unit (level III, regional referral center) from 9/1/02-6/30/03 were eligible for this pilot study. The pilot study was double-blinded, randomized, and placebo-controlled. Infants were randomized to treatment or placebo within 12 hours of beginning mechanical ventilation (IMV) and within 72 hours of birth. The treatment group received azithromycin 10 mg/kg/day for 7 days followed by 5 mg/kg/day for the duration of the study. Azithromycin or placebo was continued until the infant no longer required IMV or supplemental oxygen, to a maximum of 6 weeks. Primary endpoints were incidence of BPD as defined by oxygen requirement at 36 weeks gestation, post-natal steroid use, days of IMV, and mortality. Data was analyzed by intention to treat using Chi-square and ANOVA.</p> <p>Results</p> <p>A total of 43 extremely premature infants were enrolled in this pilot study. Mean gestational age and birth weight were similar between groups. Mortality, incidence of BPD, days of IMV, and other morbidities were not significantly different between groups. Post-natal steroid use was significantly less in the treatment group [31% (6/19)] vs. placebo group [62% (10/16)] (p = 0.05). Duration of mechanical ventilation was significantly less in treatment survivors, with a median of 13 days (1–47 days) vs. 35 days (1–112 days)(p = 0.02).</p> <p>Conclusion</p> <p>Our study suggests that azithromycin prophylaxis in extremely low birth weight infants may effectively reduce post-natal steroid use for infants. Further studies are needed to assess the effects of azithromycin on the incidence of BPD and possible less common side effects, before any recommendations regarding routine clinical use can be made.</p
Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia
Bronchopulmonary dysplasia (BPD) can evolve in prematurely born infants
who require mechanical ventilation because of hyaline membrane disease
(HMD). The development of BPD can be divided in an acute, a regenerative,
a transitional, and a chronic phase. During these different phases,
extensive remodeling of the lung parenchyma with re-epithelialization of
the alveoli and formation of fibrosis occurs. Matrix metalloproteinase-1
(MMP-1) is an enzyme that is involved in re-epithelialization processes,
and dysregulation of MMP-1 activity contributes to fibrosis. Localization
of MMP-1 and its inhibitors, tissue inhibitor of metalloproteinase
(TIMP)-1 and TIMP-2, were investigated in lung tissue obtained from
infants who died during different phases of BPD development. In all
studied cases (n = 50) type-II pneumocytes were found to be immunoreactive
for MMP-1, TIMP-1, and TIMP-2. During the acute and regenerative phase of
BPD, type-II pneumocytes re-epithelialize the injured alveoli. This may
suggest that MMP-1 and its inhibitors, expressed by type-II pneumocytes,
play a role in the re-epithelialization process after acute lung injury.
Although MMP-1 staining intensity remained constant in type-II pneumocytes
during BPD development, TIMP-1 increased during the chronic fibrotic
phase. This relative elevation of TIMP-1 compared with MMP-1 is indicative
for reduced collagenolytic activity by type-II pneumocytes in chronic BPD
and may contribute to fibrosis. Fibrotic foci in chronic BPD contained
fibroblasts immunoreactive for MMP-1 and TIMP-1 and -2. This may indicate
that decreased collagen turnover by fibroblasts contributes to fibrosis in
BPD development
Decreased Bone Mineral Density in Adults Born with Very Low Birth Weight: A Cohort Study
Petteri Hovi and colleagues evaluate skeletal health in 144 adults born preterm with very low birth weight and show that as adults these individuals have significantly lower bone mineral density than do their term-born peers
Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies
Abstract Background Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several prenatal and/or postnatal factors interfere with lower respiratory tract development, leading to a severe, lifelong disease. In this review, what is presently known regarding BPD pathogenesis, its impact on long-term pulmonary morbidity and mortality and the available preventive and therapeutic strategies are discussed. Main body Bronchopulmonary dysplasia is associated with persistent lung impairment later in life, significantly impacting health services because subjects with BPD have, in most cases, frequent respiratory diseases and reductions in quality of life and life expectancy. Prematurity per se is associated with an increased risk of long-term lung problems. However, in children with BPD, impairment of pulmonary structures and function is even greater, although the characterization of long-term outcomes of BPD is difficult because the adults presently available to study have received outdated treatment. Prenatal and postnatal preventive measures are extremely important to reduce the risk of BPD. Conclusion Bronchopulmonary dysplasia is a respiratory condition that presently occurs in preterm neonates and can lead to chronic respiratory problems. Although knowledge about BPD pathogenesis has significantly increased in recent years, not all of the mechanisms that lead to lung damage are completely understood, which explains why therapeutic approaches that are theoretically effective have been only partly satisfactory or useless and, in some cases, potentially negative. However, prevention of prematurity, systematic use of nonaggressive ventilator measures, avoiding supraphysiologic oxygen exposure and administration of surfactant, caffeine and vitamin A can significantly reduce the risk of BPD development. Cell therapy is the most fascinating new measure to address the lung damage due to BPD. It is desirable that ongoing studies yield positive results to definitively solve a major clinical, social and economic problem
- …