7 research outputs found

    In Situ Observation of a Self-Assembled Monolayer Formation of Octadecyltrimethoxysilane on a Silicon Oxide Surface Using a High-Speed Atomic Force Microscope

    Get PDF
    The formation mechanism of a self-assembled monolayer (SAM) of octadecyltrimethoxysilane on a silicon oxide surface in reaction is studied in situ by using a high-speed atomic force microscope that has a time resolution of 2 s per frame. The SAM formation of a silane coupling reagent on silicon is known to comprise three development stages of nucleation, growth, and coalescence. In the present study, the first nucleation stage is found to have dynamical processes: a molecular cluster attached to the substrate works as a reaction base, on which additional reactive molecules are in a bind/unbind equilibrium. In this time period, the cluster needs a long time to develop in diameter. Once a domain of ca. 30 nm in diameter is formed, the reaction rate is changed, which is dominated by the rim length of the domain. This implies that the weakly adsorbing limit approximation on the substrate surface can be employed. Another important point is that the molecular domains generate a SAM like an occupied sheet of tiles, and each tile is connected to the substrate by a few feet. In fact, a molecular tile can easily be removed by applying soft air plasma leaving the rest of the tiles of highly packed molecules, which is confirmed by infrared p-polarized external reflection spectroscopy

    Optimal Experimental Condition of IR pMAIRS Calibrated by Using an Optically Isotropic Thin Film Exhibiting the Berreman Effect

    Get PDF
    Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a useful spectroscopic tool for revealing the molecular anisotropic structure in a thin film, which is used for the molecular orientation analysis of many functionalized organic thin films. Infrared pMAIRS provides both in-plane (IP) and out-of-plane (OP) vibrational mode spectra, which are influenced by the choice of the angles of incidence, i.e., angle set. To obtain quantitatively reliable pMAIRS spectra, therefore, the optimal angle set must be revealed. In a former study, an optimization study was carried out on a silicon substrate by using the band intensity ratio of the IP and OP spectra of highly oriented molecules in a thin film, which has a problem that the optimized results cannot be used for another substrate. In the present study, a totally new idea using an optically isotropic thin film as a standard sample is proposed to comprehensively explore the optimal angle set on various substrates: the band shift due to the Berreman effect of a strongly absorbing compound is used, instead of the band intensity. This new approach makes the pMAIRS calibration for various substrates a much easier task. With the optimal angle set, the molecular orientation angle in the film calculated by the pMAIRS spectra is also found to be reliable quantitatively. This technique opens a user-friendly way to a reliable molecular orientation analysis in an ultrathin film using IR pMAIRS

    Surface Selection Rule of Infrared Diffuse Reflection Spectrometry for Analysis of Molecular Adsorbates on a Rough Surface of a Nonabsorbing Medium

    No full text
    The surface selection rule (SSR) for discussing the molecular orientation in a thin film adsorbed on a rough surface is determined by analyzing a surface monolayer by defining the angle of incidence and polarizations. As the standard sample, a highly organized self-assembled monolayer (SAM) on a rough alumina surface is employed. By introducing crossed-Nicol polarizers in the incident and detection paths, the specular reflection and diffuse reflection components are readily separated. To fully understand the spectra of the SAM, a new idea is proposed that the incidental light can be excluded from the discussion when the angle of incidence is small, which is named the pseudotransmission (pd-Tr) model. Another important idea is that a part of a spectrum is degraded in the signal-to-noise ratio by the suppression of incidental light on the rough surface via a deconstructive interference, which can experimentally be revealed by the crossed-Nicol measurements of single-beam spectra depending on the angle of incidence. Through the experiments of all the combinations of polarizations and angles of incidence, the pd-Tr model and the light suppression are found to be an important base to fully understand the SSR of molecular adsorbates on a rough surface of a nonabsorbing medium

    Epidemiological survey for visna-maedi among sheep in northern prefectures of Japan

    No full text
    Ovine sera collected from the northern Prefectures of Hokkaido, Iwate and Aomori in Japan, were examined for the presence of antibodies against visna-maedi virus using the agar gel immunodiffusion test and enzyme-linked immunosorbent assays. Three animals (1.12%), out of 267 samples tested, were found to be seropositive to the visna-maedi antigens in both tests. Levels of infection were found in flocks from Hokkaido and Iwate Prefectures, but not in the Aomori Prefecture. Nucleic acid detection by polymerase chain reaction on serum samples did not give positive results. Although no diagnostic measures were in place, the infection could not be related to losses in sheep production or to reduced survival rates. The very limited visna-maedi distribution indicates a highly favourable condition for the application of eradication strategies in this area
    corecore