122 research outputs found

    Interfering with TGFβ-induced Smad3 nuclear accumulation differentially affects TGFβ-dependent gene expression

    Get PDF
    BACKGROUND: Transforming growth factor-β (TGFβ) plays an important role in late-stage carcinogenesis by stimulating invasive behavior of cancer cells, promoting neo-angiogenesis and by helping cancer cells to escape surveillance by the immune system. It also supports colonization of the bone by metastatic breast cancer cells by increasing expression of osteolytic parathyroid hormone-related protein (PTHrP). Interfering with TGFβ signalling may thus weaken the malignant properties of cancer cells. We investigated to what extent two inhibitors, SB-202190 and SB-203580, interfere with TGFβ-signalling in invasive MDA-MB-231 breast cancer cells. These compounds, formerly used as p38-MAPK-specific inhibitors, were recently also demonstrated to inhibit TGFβ type I receptor kinase. RESULTS: Our results show that these inhibitors delay the onset of TGFβ-induced nuclear accumulation of Smad3 and reduces its amplitude. This effect was accompanied by a strong reduction in TGFβ-responsivess of the slow-responder genes pthrp, pai-1 and upa, while the reactivity of the fast-responder gene smad7 to TGFβ remained almost unchanged. Neither was the TGFβ response of the fast-responder ese-1/esx gene, whose expression we found to be strongly downregulated by TGFβ, affected by the inhibitors. CONCLUSION: The data show that SB-202190 and SB-203580 suppress TGFβ-dependent activation of genes that are important for the acquisition of invasive behavior, while having no effect on the expression of the natural TGFβ inhibitor Smad7. This suggests that these compounds are potent inhibitors of malignant behavior of cancer cells

    Liber Amicorum. Claus Pelling zum 90. Geburtstag

    Get PDF
    Die Festschrift ehrt den langjährigen Förderer der Universität Tübingen mit 14 Beiträgen aus den unterschiedlichsten Wissensgebieten, die die Vielfalt der Interessen des Jubilars widerspiegeln: Chromosomenforschung, Mesoamerikanistik, Islamische und Antike Numismatik, Ägyptologie, Sphragistik, Islamwissenschaft und Bildende Kunst

    Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells

    Get PDF
    The activity of serum response factor (SRF), an essential transcription factor in mouse gastrulation, is regulated by changes in actin dynamics. Using Srf(−/−) embryonic stem (ES) cells, we demonstrate that SRF deficiency causes impairments in ES cell spreading, adhesion, and migration. These defects correlate with defective formation of cytoskeletal structures, namely actin stress fibers and focal adhesion (FA) plaques. The FA proteins FA kinase (FAK), β1-integrin, talin, zyxin, and vinculin were downregulated and/or mislocalized in ES cells lacking SRF, leading to inefficient activation of the FA signaling kinase FAK. Reduced overall actin expression levels in Srf(−/−) ES cells were accompanied by an offset treadmilling equilibrium, resulting in lowered F-actin levels. Expression of active RhoA-V14 rescued F-actin synthesis but not stress fiber formation. Introduction of constitutively active SRF-VP16 into Srf(−/−) ES cells, on the other hand, strongly induced expression of FA components and F-actin synthesis, leading to a dramatic reorganization of actin filaments into stress fibers and lamellipodia. Thus, using ES cell genetics, we demonstrate for the first time the importance of SRF for the formation of actin-directed cytoskeletal structures that determine cell spreading, adhesion, and migration. Our findings suggest an involvement of SRF in cell migratory processes in multicellular organisms

    The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells

    Get PDF
    BACKGROUND: The regulation of the immediate-early gene c-fos serves as a paradigm for signal-activated gene induction. Lysophosphatidic acid is a potent serum-borne mitogen able to induce c-fos. RESULTS: Analysing the signalling events following stimulation of mouse embryonic stem cells with serum and lysophosphatidic acid, we show that the extracellular signal-regulated kinase (ERK) pathway is involved in mediating c-fos induction. We demonstrate that the ERK-activated kinase MSK1 is required for full c-fos promoter activation, as well as for the phosphorylation of cAMP-responsive element (CRE) binding proteins. We propose that MSK1 contributes to ERK-mediated c-fos promoter activation by targeting CRE binding proteins. CONCLUSION: These results show that MSK1 is an important ERK-activated mediator of mitogen-stimulated c-fos induction. In addition, they indicate that MSK1 could act through CRE binding proteins to achieve c-fos promoter activation. Thus, they further our understanding of the complex regulation of the model immediate-early gene c-fos

    Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires <it>de novo </it>peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete <it>Plasmopara halstedii</it>, we first evaluated the performance of three different <it>de novo </it>peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i).</p> <p>Results</p> <p>The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set.</p> <p>All three <it>de </it>novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of <it>P. halstedii</it>. We found ten <it>de novo </it>sequenced peptides that showed homology to a <it>Phytophthora infestans </it>protein, a closely related organism of <it>P. halstedii</it>. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase.</p> <p>Conclusions</p> <p>Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different <it>de novo </it>peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in <it>P. halstedii</it>.</p

    Bartonella Adhesin A Mediates a Proangiogenic Host Cell Response

    Get PDF
    Bartonella henselae causes vasculoproliferative disorders in humans. We identified a nonfimbrial adhesin of B. henselae designated as Bartonella adhesin A (BadA). BadA is a 340-kD outer membrane protein encoded by the 9.3-kb badA gene. It has a modular structure and contains domains homologous to the Yersinia enterocolitica nonfimbrial adhesin (Yersinia adhesin A). Expression of BadA was restored in a BadA-deficient transposon mutant by complementation in trans. BadA mediates the binding of B. henselae to extracellular matrix proteins and to endothelial cells, possibly via β1 integrins, but prevents phagocytosis. Expression of BadA is crucial for activation of hypoxia-inducible factor 1 in host cells by B. henselae and secretion of proangiogenic cytokines (e.g., vascular endothelial growth factor). BadA is immunodominant in B. henselae–infected patients and rodents, indicating that it is expressed during Bartonella infections. Our results suggest that BadA, the largest characterized bacterial protein thus far, is a major pathogenicity factor of B. henselae with a potential role in the induction of vasculoproliferative disorders

    Loss of ELK1 has differential effects on age-dependent organ fibrosis and integrin expression

    Get PDF
    ETS domain-containing protein-1 (ELK1) is a transcription factor important in regulating αvβ6 integrin expression. αvβ6 integrins activate the profibrotic cytokine Transforming Growth Factor β1 (TGFβ1) and are increased in the alveolar epithelium in idiopathic pulmonary fibrosis (IPF). IPF is a disease associated with aging and therefore we hypothesised that aged animals lacking Elk1 globally would develop spontaneous fibrosis in organs where αvβ6 mediated TGFβ activation has been implicated. Here we identify that Elk1-knockout (Elk1−/0) mice aged to one year developed spontaneous fibrosis in the absence of injury in both the lung and the liver but not in the heart or kidneys. The lungs of Elk1−/0 aged mice demonstrated increased collagen deposition, in particular collagen 3α1, located in small fibrotic foci and thickened alveolar walls. Despite the liver having relatively low global levels of ELK1 expression, Elk1−/0 animals developed hepatosteatosis and fibrosis. The loss of Elk1 also had differential effects on Itgb1, Itgb5 and Itgb6 expression in the four organs potentially explaining the phenotypic differences in these organs. To understand the potential causes of reduced ELK1 in human disease we exposed human lung epithelial cells and murine lung slices to cigarette smoke extract, which lead to reduced ELK1 expression andmay explain the loss of ELK1 in human disease. These data support a fundamental role for ELK1 in protecting against the development of progressive fibrosis via transcriptional regulation of beta integrin subunit genes, and demonstrate that loss of ELK1 can be caused by cigarette smoke

    Integrated Proteomic Analysis of Human Cancer Cells and Plasma from Tumor Bearing Mice for Ovarian Cancer Biomarker Discovery

    Get PDF
    Background: The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery. Methodology/Principal Findings: We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease. Conclusions/Significance: Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers
    • …
    corecore