28 research outputs found

    Building deformation assessment by means of Persistent Scatterer Interferometry analysis on a landslide-affected area: the Volterra (Italy) case study

    Get PDF
    In recent years, space-borne InSAR (interferometric synthetic aperture radar) techniques have shown their capabilities to provide precise measurements of Earth surface displacements for monitoring natural processes. Landslides threaten human lives and structures, especially in urbanized areas, where the density of elements at risk sensitive to ground movements is high. The methodology described in this paper aims at detecting terrain motions and building deformations at the local scale, by means of satellite radar data combined with in situ validation campaigns. The proposed approach consists of deriving maximum settlement directions of the investigated buildings from displacement data revealed by radar measurements and then in the cross-comparison of these values with background geological data, constructive features and on-field evidence. This validation permits better understanding whether or not the detected movements correspond to visible and effective damages to buildings. The method has been applied to the southwestern sector of Volterra (Tuscany region, Italy), which is a landslide-affected and partially urbanized area, through the use of COSMO-SkyMed satellite images as input data. Moreover, we discuss issues and possible misinterpretations when dealing with PSI (Persistent Scatterer Interferometry) data referring to single manufactures and the consequent difficulty of attributing the motion rate to ground displacements, rather than to structural failures

    Shifts in the eruptive styles at Stromboli in 2010-2014 revealed by ground-based InSAR data

    Get PDF
    Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most significant deformation signal, provides an exceptional geometrical resolution, and allows for continuous monitoring of the deformation. Here, we present and model ground displacements collected at Stromboli by GBInSAR from January 2010 to August 2014. During this period, the volcano experienced several episodes of intense volcanic activity, culminated in the effusive flank eruption of August 2014. Modelling of the deformation allowed us to estimate a source depth of 482 ± 46 m a.s.l. The cumulative volume change was 4.7 ± 2.6 × 10(5) m(3). The strain energy of the source was evaluated 3-5 times higher than the surface energy needed to open the 6-7 August eruptive fissure. The analysis proposed here can help forecast shifts in the eruptive style and especially the onset of flank eruptions at Stromboli and at similar volcanic systems (e.g. Etna, Piton de La Fournaise, Kilauea)

    Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses

    Get PDF
    Predicting the time of failure is a topic of major concern in the field of geological risk management. Several approaches, based on the analysis of displacement monitoring data, have been proposed in recent years to deal with the issue. Among these, the inverse velocity method surely demonstrated its effectiveness in anticipating the time of collapse of rock slopes displaying accelerating trends of deformation rate. However, inferring suitable linear trend lines and deducing reliable failure predictions from inverse velocity plots are processes that may be hampered by the noise present in the measurements; data smoothing is therefore a very important phase of inverse velocity analyses. In this study, different filters are tested on velocity time series from four case studies of geomechanical failure in order to improve, in retrospect, the reliability of failure predictions: Specifically, three major landslides and the collapse of an historical city wall in Italy have been examined. The effects of noise on the interpretation of inverse velocity graphs are also assessed. General guidelines to conveniently perform data smoothing, in relation to the specific characteristics of the acceleration phase, are deduced. Finally, with the aim of improving the practical use of the method and supporting the definition of emergency response plans, some standard procedures to automatically setup failure alarm levels are proposed. The thresholds which separate the alarm levels would be established without needing a long period of neither reference historical data nor calibration on past failure events

    Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity

    Get PDF
    AbstractStromboli volcano (Southern Italy) is one of the most monitored volcano in the world with a surveillance network that includes a permanently sited ground-based SAR interferometer (GBInSAR). This work is the review of the GBInSAR data gained from the last decade of monitoring activity. The analysis of the entire dataset of GBInSAR measurements allowed the assessment of the deformation field of the northern part of the summit crater area and the Sciara del Fuoco depression. In detail, the main displacements recognized can be related to different factors: 1) the inflation/deflation respectively immediately before and after each new effusive event; 2) the bulging of localized sectors of the volcano involved in the vent opening; 3) the gravitational sliding of the Sciara del Fuoco infill; 4) the movement of lava flows. Accelerations in this sector are related to sheet intrusions, while the possibility of vent opening, associated with small sliding, or catastrophic flank failure are related to highly overpressurized sheets, able to produce high displacement rate in the Sciara del Fuoco.In the summit crater area, the increases in the displacement rate are related to the pressurization of the shallow conduit system, as the consequence of the variation in the magma level (magmastatic pressure) or to the lateral magma migration (lateral conduit expansion or dike intrusion) in response to the increase of the overpressure component. Fluctuations in the displacement rate in the summit crater area can be related to the magma overturning within the conduit, with the increases in displacement rate during the upwelling of less dense magma, while displacement rate decreases as the degassed magma column is pushed out from the conduit (lava flows or overflows). Instead, the decrease in the displacement rate without coeval lava outpouring could be related to the sink of the degassed magma due to density contrast between the gas-poor and the gas-charged magmas. Using the displacement rate in the summit crater area as a proxy for the variation in the pressure condition in conduit (both magmastatic and overpressure components), thresholds for the crises characterized by the occurrence of overflows (eventually associated with major explosions) and flank effusions (eventually associated with paroxysmal explosions) are identified. Small conduit overpressure will produce overflows (sometimes associated with crater-rim collapses), while large magma overpressure will laterally expand the conduit forming NE-SW striking sheets, feeding eruptive vents at the base of the summit crater area and within the Sciara del Fuoco, generating conditions of instability that can evolve into catastrophic collapse of the instable flank

    Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring: The Stromboli volcano case study

    Get PDF
    Abstract We present a joint exploitation of space-borne and ground-based Synthetic Aperture Radar Interferometry (InSAR) and Multi Temporal (MT) InSAR measurements for investigating the Stromboli volcano (Italy) deformation phenomena. In particular, we focus our analysis on three periods: a) the time interval following the 2014 flank eruption, b) the July–August 2019 eruption and c) the following post-eruptive phase. To do this, we take advantage from an unprecedented set of space-borne and ground-based SAR data collected from April 2015 up to November 2019 along two (one ascending and one descending) Sentinel-1 (S-1) tracks, as well as, in the same period, by two ground-based systems installed along the Sciara del Fuoco northern rim. Such data availability permitted us to first characterize the volcano long-term 3D deformation behavior of the pre-eruptive period (April 2015–June 2019), by jointly inverting the space-borne and ground-based InSAR measurements. Then, the GB-SAR measurements allowed us to investigate the sin-eruptive time span (3rd July 2019 – 30th August 2019) which revealed rapid deformation episodes (e.g. more than 30 mm/h just 2 min before the 3rd July 2019 explosion) associated with the eruptive activity, that cannot be detected with the weekly S-1 temporal sampling. Finally, the S-1 measurements permitted to better constrain the post 2019 eruption deformations (31st August 2019 – 5th November 2019), which are mainly located outside the GB-SAR sensed area. The presented results demonstrate the effectiveness of the joint exploitation of the InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the deformation phenomena affecting volcanic areas

    The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping

    Get PDF
    On 24 October 2015, following a period of heavy rainfall, a landslide occurred in the Calatabiano Municipality (Sicily Island, Southern Italy), causing the rupture of a water pipeline supplying water to the city of Messina. Following this event, approximately 250,000 inhabitants of the city suffered critical water shortages for several days. Consequently, on 6 November 2015, a state of emergency was declared (O.C.D.P. 295/2015) by the National Italian Department of Civil Protection (DPC). During the emergency management phase, a provisional by-pass, consisting of three 350-m long pipes passing through the landslide area, was constructed to restore water to the city. Furthermore, on 11 November 2015, a landslide remote-sensing monitoring system was installed with the following purposes: (i) analyse the landslide geomorphological and kinematic features in order to assess the residual landslide risk and (ii) support the early warning procedures needed to ensure the safety of the personnel involved in the by-pass construction and the landslide stabilization works. The monitoring system was based on the combined use of Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) and terrestrial laser scanning (TLS). In this work, the preliminary results of the monitoring activities and a remote 3D map of the landslide area are presented
    corecore