5,420 research outputs found

    Internal magnetic field effect on magnetoelectricity in orthorhombic RMnO3RMnO_3 crystals

    Full text link
    We have investigated the role of the 4ff moment on the magnetoelectric (ME) effect of orthorhombic RRMnO3_{3} (RR=rare earth ions). In order to clarify the role of the 4ff moment, we prepared three samples: (Eu,Y)MnO3_{3} without the 4ff moment, TbMnO3_{3} with the anisotropic 4ff moment, and (Gd,Y)MnO3_{3} with the isotropic 4ff moment. The ferroelectric behaviors of these samples are different from each other in a zero magnetic field. (Eu,Y)MnO3_{3} and (Gd,Y)MnO3_{3} show the ferroelectric polarization along the a axis in the ground state, while TbMnO3_{3} shows it along the c axis. Such difference may arise from the influence of the anisotropic Tb3+^{3+} 4ff moment. The direction of the ferroelectric polarization of RRMnO3_{3} is determined by the internal magnetic field arising from the 4ff moment.Comment: 2 pages, 1 figure, the proceeding of International Conference of Magnetism, to be published in the Journal of Magnetism and Magnetic Material

    Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements

    Full text link
    Observations of the Sun from the Earth are always limited by the presence of the atmosphere, which strongly disturbs the images. A solution to this problem is to place the telescopes in space satellites, which produce observations without any (or limited) atmospheric aberrations. However, even though the images from space are not affected by atmospheric seeing, the optical properties of the instruments still limit the observations. In the case of diffraction limited observations, the PSF establishes the maximum allowed spatial resolution, defined as the distance between two nearby structures that can be properly distinguished. In addition, the shape of the PSF induce a dispersion of the light from different parts of the image, leading to what is commonly termed as stray light or dispersed light. This effect produces that light observed in a spatial location at the focal plane is a combination of the light emitted in the object at relatively distant spatial locations. We aim to correct the effect produced by the telescope's PSF using a deconvolution method, and we decided to apply the code on Hinode/SP quiet Sun observations. We analyze the validity of the deconvolution process with noisy data and we infer the physical properties of quiet Sun magnetic elements after the deconvolution process.Comment: 14 pages, 9 figure

    Magnetic-field-induced switching between ferroelectric phases in orthorhombic-distortion-controlled RRMnO3_{3}

    Full text link
    We have investigated the dielectric and magnetic properties of Eu0.595_{0.595}Y0.405_{0.405}MnO3_{3} withoutwithout the presence of the 4ff magnetic moments of the rare earth ions, and have found two ferroelectric phases with polarization along the aa and cc axes in a zero magnetic field. A magnetic field induced switching from one to the other ferroelectric phase took plase in which the direction of ferroelectric polarization changed from the a axis to the c axis by the application of magnetic fields parallel to the a axis. In contrast to the case of TbMnO3_{3}, in which the 4ff moments of Tb3+^{3+} ions play an important role in such a ferroelectric phase switching, the magnetic-field-induced switching between ferroelectric phases in Eu0.595_{0.595}Y0.405_{0.405}MnO3_{3} does not originate from the magnetic transition of the rare-earth 4ff moments, but from that of the Mn 3dd spins.Comment: 8 pages, 3 figures, RevTeX4, Proceedings of MMM 2005, to appear in J. Appl. Phy

    International Stock Market Efficiency: A Non-Bayesian Time-Varying Model Approach

    Full text link
    This paper develops a non-Bayesian methodology to analyze the time-varying structure of international linkages and market efficiency in G7 countries. We consider a non-Bayesian time-varying vector autoregressive (TV-VAR) model, and apply it to estimate the joint degree of market efficiency in the sense of Fama (1970, 1991). Our empirical results provide a new perspective that the international linkages and market efficiency change over time and that their behaviors correspond well to historical events of the international financial system.Comment: 21 pages, 2 tables, 6 figure

    Persistent and Reversible Phase Control in GdMnO3_3 near the Phase Boundary

    Full text link
    We have investigated temperature and magnetic-field dependence of dielectric properties in the orthorhombic GdMnO3_3 single crystal which is located near the phase boundary between the ferroelectric/spiral-antiferromagnetic phase and the paraelectric/AA-type-antiferromagnetic one. In this compound, strong phase competition between these two phases results in a unique phase diagram with large temperature and magnetic-field hystereses. Based on the phase diagram, we have successfully demonstrated the persistent and reversible phase switching between them by application of magnetic fields.Comment: 4 pages, 2 figures, proceeding of 25th International Conference on Low Temperature Physics LT2

    Coexistence of Bloch electrons and glassy electrons in Ca10(Ir4As8)(Fe2_xIrxAs2)5 revealed by angle-resolved photoemission spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy of Ca10(Ir4As8)(Fe2_xIrxAs2)5 shows that the Fe 3d electrons in the FeAs layer form the hole-like Fermi pocket at the zone center and the electron-like Fermi pockets at the zone corners as commonly seen in various Fe-based superconductors. The FeAs layer is heavily electron doped and has relatively good two dimensionality. On the other hand, the Ir 5d electrons are metallic and glassy probably due to atomic disorder related to the Ir 5d orbital instability. Ca10(Ir4As8)(Fe2_xIrxAs2)5 exhibits a unique electronic state where the Bloch electrons in the FeAs layer coexist with the glassy electrons in the Ir4As8 layer.Comment: 4 pages, 3 figure

    Solar polarimetry through the K I lines at 770 nm

    Full text link
    We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km and that they are sensitive to the line of sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line of sight velocity and the magnetic field.Comment: 10 pages, 9 figures, main journal publicatio

    Quark condensate in nuclear matter based on Nuclear Schwinger-Dyson formalism

    Full text link
    The effects of higher order corrections of ring diagrams for the quark condensate are studied by using the bare vertex Nuclear Schwinger Dyson formalism based on σ\sigma-ω\omega model. At the high density the quark condensate is reduced by the higher order contribution of ring diagrams more than the mean field theory or the Hartree-Fock
    corecore