8,400 research outputs found

    Comparative Microbial Dynamics in Crassostrea virginica and Crassostrea ariakensis

    Get PDF
    Considerations to introduce the Suminoe or Asian oyster Crassostrea ariakensis along the East Coast have raised many questions regarding ecology, economics, and human health. To date, research has focused primarily on the ecological and socioeconomic implications of this initiative, yet few studies have assessed its potential impact on public health. Our work compares the rates of bioaccumulation, depuration and post harvest decay of indicator organisms (such as E. coli) and Vibrio sp. between Crassostrea virginica and Crassostrea ariakensis in the laboratory. Preliminary results suggest that the rates of bioaccumulation of E. coli in Crassostrea ariakensis were significantly lower than those for Crassostrea virginica, depuration of E. coli was variable between the two species, and Crassostrea ariakensis post harvest decay rates of Vibrio sp. were significantly lower than Crassostrea virginica. This research provides coastal managers with insight into the response of Crassostrea ariakensis to bacteria, an important consideration for determining appropriate management strategies for this species. Further field-based studies will be necessary to elucidate the mechanisms responsible for the differences in rates of bioaccumulation and depuration. (PDF contains 40 pages

    Vibrio bacteria in raw oysters: managing risks to human health

    Get PDF
    The human-pathogenic marine bacteria Vibrio vulnificus and V. parahaemolyticus are strongly correlated with water temperature, with concentrations increasing as waters warm seasonally. Both of these bacteria can be concentrated in filter-feeding shellfish, especially oysters. Because oysters are often consumed raw, this exposes people to large doses of potentially harmful bacteria. Various models are used to predict the abundance of these bacteria in oysters, which guide shellfish harvest policy meant to reduce human health risk. Vibrio abundance and behaviour varies from site to site, suggesting that location-specific studies are needed to establish targeted risk reduction strategies. Moreover, virulence potential, rather than simple abundance, should be also be included in future modeling efforts

    Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials

    Get PDF
    The mushroom (Agaricus bisporus) has a requirement for a ‘‘casing layer’’ that has specific physical, chemical and microbiological properties which stimulate and promote the initiation of primordia. Some of these primordia then may develop further into sporophores, involving differentiation of tissue. Wild and commercial strains of A. bisporus were cultured in axenic and nonaxenic microcosms, using a rye grain substrate covered by a range of organic and inorganic casing materials. In axenic culture, A. bisporus (commercial strain A15) was capable of producing primordia and mature sporophores on charcoal (wood and activated), anthracite coal, lignite and zeolite, but not on bark, coir, peat, rockwool, silica or vermiculite. Of six strains tested, only the developmental variant mutant, B430, produced rudimentary primordia on axenic peat-based casing material. However, none of these rudimentary primordia developed differentiated tissues or beyond 4 mm diameter, either on axenic casing material in the microcosms or in larger-scale culture. In larger-scale, nonaxenic culture, strain B430 produced severely malformed but mature sporophores in similar numbers to those of other strains. Typically, 3–6% of primordia developed into mature sporophores, but significant differences in this proportion, as well as in the numbers of primordia produced, were recorded between 12 A. bisporus strains

    Computing labs and Technology Classroom (ClTC) Initiative: A Model for Distributed Support

    Get PDF
    DePauw University is a small, liberal arts institution with 2200 undergraduate residential students and 222 faculty members, located in Greencastle, Indiana The challenges of supporting a campus with multiple and diverse facilities are further amplified by limited staff support resources. One of the strategies for addressing these challenges led to the formation of the Computing Labs and Technology Classrooms (CLTC) initiative. The CLTC recognizes and draws on the strengths of support specialists with a wide variety of professional training and experience, who regularly collaborate in the support and management of campus-wide labs and technology classrooms

    Dear Ireland When You\u27re Free

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4587/thumbnail.jp

    Probing the Dark Dimension with Auger data

    Full text link
    [Abridged] By combining swampland conjectures with observational data, it was recently noted that our universe could stretch off in an asymptotic region of the string landscape of vacua. In this framework, the cosmological hierarchy problem can be resolved by the addition of one mesoscopic (dark) dimension of size λΛ1/41 μm\sim \lambda \, \Lambda^{-1/4} \sim 1~\mu{\rm m}. The Planck scale of the higher dimensional theory, MUVλ1/3Λ1/12MPl2/31010 GeVM_{\rm UV} \sim \lambda^{-1/3} \Lambda^{1/12} M_{\rm Pl}^{2/3} \sim 10^{10}~{\rm GeV}, is tantalizingly close to the energy above which the TA and Auger collaborations found conclusive evidence for a sharp cutoff of the flux of UHECRs. It was recently suggested that since physics becomes strongly coupled to gravity beyond MUVM_{\rm UV}, universal features deep-rooted in the dark dimension could control the energy cutoff of the source spectra. Conversely, in the absence of phenomena inborn within the dark dimension, we would expect a high variance of the cosmic ray maximum energy characterizing the source spectra, reflecting the many different properties inherent to the most commonly assumed UHECR accelerators. A recent analysis of Auger and TA data exposed strong evidence for a correlation between UHECRs and nearby starburst galaxies, with a global significance post-trial of 4.7σ4.7\sigma. Since these galaxies are in our cosmic backyard, the flux attenuation factor due to cosmic ray interactions en route to Earth turns out to be negligible. This implies that for each source, the shape of the observed spectrum should roughly match the emission spectrum, providing a unique testing ground for the dark dimension hypothesis. Using Auger data, we carry out a maximum likelihood analysis to characterize the shape of the UHECR emission from the galaxies dominating the anisotropy signal. We show that the observed spectra could be universal only if λ103\lambda \lesssim 10^{-3}.Comment: 17 pages, 3 figure

    Narrow Line Cooling and Momentum-Space Crystals

    Full text link
    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm 1S0 - 3P1 narrow line cooling of atomic 88Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to continuously bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling process, some of which are intimately linked to gravity, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.Comment: 14 pages, 19 figure
    corecore