165 research outputs found

    Absence of a transport signature of spin-orbit coupling in graphene with indium adatoms

    Full text link
    Enhancement of the spin-orbit coupling in graphene may lead to various topological phenomena and also find applications in spintronics. Adatom absorption has been proposed as an effective way to achieve the goal. In particular, great hope has been held for indium in strengthening the spin-orbit coupling and realizing the quantum spin Hall effect. To search for evidence of the spin-orbit coupling in graphene absorbed with indium adatoms, we carry out extensive transport measurements, i.e., weak localization magnetoresistance, quantum Hall effect and non-local spin Hall effect. No signature of the spin-orbit coupling is found. Possible explanations are discussed.Comment: 5 pages, 4 figures, with supplementary material

    A Separated-Flow Model for 2-D Viscous Flows around Bluff Bodies Using the Panel Method

    Get PDF
    Panel methods have been applied to many fields of fluid owing to their computational efficiency. However, their applications are limited in simulating highly turbulent flow with separations due to the inviscid flow assumptions, such as those associated with train aerodynamics. Some researchers employed the wake models to simulate large vortices in the wake of trains with predetermined separation locations according to experimental results. In this paper, a modified 2-D constant source/vortex panel method for modelling the separated flow around 2-D bluff bodies is presented. The proposed separated-flow model includes the prediction of separation locations based on the integral boundary-layer method and the shear layer, and large vortices in the wake of the bluff bodies are modelled by the wake model. The proposed method is validated by comparing the calculated pressure distribution on a 2-D circular cylinder with the experimental results. The method is then applied to simulate the flow around a 2-D generic train and calculate the pressure distribution on the train. Since trains run very close to the ground, the effect of the ground configuration on the pressure distribution of the 2-D train is also investigated in this paper using the proposed method. The main contribution of the work is to present a 2-D separated-flow model with wake modelling and separation prediction. The proposed model can be used in the rapid evaluation of bluff-body aerodynamics

    FAST observations of an extremely active episode of FRB 20201124A: II. Energy Distribution

    Full text link
    We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during an extremely active episode on UTC September 25-28, 2021 in a series of four papers. In this second paper of the series, we mainly focus on the energy distribution of the detected bursts. The event rate initially increased exponentially but the source activity stopped within 24 hours after the 4th day. The detection of 542 bursts in one hour during the fourth day marked the highest event rate detected from one single FRB source so far. The bursts have complex structures in the time-frequency space. We find a double-peak distribution of the waiting time, which can be modeled with two log-normal functions peaking at 51.22 ms and 10.05 s, respectively. Compared with the emission from a previous active episode of the source detected with FAST, the second distribution peak time is smaller, suggesting that this peak is defined by the activity level of the source. We calculate the isotropic energy of the bursts using both a partial bandwidth and a full bandwidth and find that the energy distribution is not significantly changed. We find that an exponentially connected broken-power-law function can fit the cumulative burst energy distribution well, with the lower and higher-energy indices being −1.22±0.01-1.22\pm0.01 and −4.27±0.23-4.27\pm0.23, respectively. Assuming a radio radiative efficiency of ηr=10−4\eta_r = 10^{-4}, the total isotropic energy of the bursts released during the four days when the source was active is already 3.9×10463.9\times10^{46} erg, exceeding ∼23%\sim 23\% of the available magnetar dipolar magnetic energy. This challenges the magnetar models invoking an inefficient radio emission (e.g. synchrotron maser models).Comment: 26 pages, 7 figures, accepted for publication in Research in Astronomy and Astrophysic

    FAST observations of an extremely active episode of FRB 20201124A: IV. Spin Period Search

    Full text link
    We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio telescope (FAST) during an extremely active episode on UTC September 25th-28th, 2021 in a series of four papers. In this fourth paper of the series, we present a systematic search of the spin period and linear acceleration of the source object from both 996 individual pulse peaks and the dedispersed time series. No credible spin period was found from this data set. We rule out the presence of significant periodicity in the range between 1 ms to 100 s with a pulse duty cycle <0.49±0.08< 0.49\pm0.08 (when the profile is defined by a von-Mises function, not a boxcar function) and linear acceleration up to 300300 m s−2^{-2} in each of the four one-hour observing sessions, and up to 0.60.6 m s−2^{-2} in all 4 days. These searches contest theoretical scenarios involving a 1 ms to 100 s isolated magnetar/pulsar with surface magnetic field <1015<10^{15} G and a small duty cycle (such as in a polar-cap emission mode) or a pulsar with a companion star or black hole up to 100 M⊙_{\rm \odot} and Pb>10P_b>10 hours. We also perform a periodicity search of the fine structures and identify 53 unrelated millisecond-timescale "periods" in multi-components with the highest significance of 3.9 σ\sigma. The "periods" recovered from the fine structures are neither consistent nor harmonically related. Thus they are not likely to come from a spin period. We caution against claiming spin periodicity with significance below ∼\sim 4 σ\sigma with multi-components from one-off FRBs. We discuss the implications of our results and the possible connections between FRB multi-components and pulsar micro-structures.Comment: Accepted by Research in Astronomy and Astrophysics (RAA

    LPV robust servo control of aircraft active side-sticks

    Get PDF
    Purpose This paper aims to focus on the variable stick force-displacement (SFD) gradience in the active side stick (ASS) servo system for the civil aircraft. Design/methodology/approach The problem of variable SFD gradience was introduced first, followed by the analysis of its impact on the ASS servo system. To solve this problem, a linear-parameter-varying (LPV) control approach was suggested to process the variable gradience of the SFD. A H∞ robust control method was proposed to deal with the external disturbance. Findings To validate the algorithm performance, a linear time-variant system was calculated to be used to worst cases and the SFD gradience was set to linear and non-linear variation to test the algorithm, and some typical examples of pitch angle and side-slip angle tracking control for a large civil aircraft were also used to verify the algorithm. The results showed that the LPV control method had less settling time and less steady tracking errors than H∞ control, even in the variable SFD case. Practical implications This paper presented an ASS servo system using the LPV control method to solve the problem caused by the variable SFD gradience. The motor torque command was calculated by pressure and position feedback without additional hardware support. It was more useful for the electronic hydraulic servo actuator. Originality/value This was the research paper that analyzed the impact of the variable SFD gradience in the ASS servo system and presented an LPV control method to solve it. It was applicable for the SFD gradience changing in the linear and non-linear cases

    Role of the mucin-like glycoprotein FCGBP in mucosal immunity and cancer

    Get PDF
    IgGFc-binding protein (FCGBP) is a mucin first detected in the intestinal epithelium. It plays an important role in innate mucosal epithelial defense, tumor metastasis, and tumor immunity. FCGBP forms disulfide-linked heterodimers with mucin-2 and members of the trefoil factor family. These formed complexes inhibit bacterial attachment to mucosal surfaces, affect the motility of pathogens, and support their clearance. Altered FCGBP expression levels may be important in the pathologic processes of Crohn’s disease and ulcerative colitis. FCGBP is also involved in regulating the infiltration of immune cells into tumor microenvironments. Thus, the molecule is a valuable marker of tumor prognosis. This review summarizes the functional relevance and role of FCGBP in immune responses and disease development, and highlights the potential role in diagnosis and predicting tumor prognosis

    CRAFTS for Fast Radio Bursts Extending the dispersion-fluence relation with new FRBs detected by FAST

    Get PDF
    We report three new FRBs discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST), namely FRB 181017.J0036+11, FRB 181118 and FRB 181130, through the Commensal Radio Astronomy FAST Survey (CRAFTS). Together with FRB 181123 that was reported earlier, all four FAST-discovered FRBs share the same characteristics of low fluence (≤\leq0.2 Jy ms) and high dispersion measure (DM, >1000>1000 \dmu), consistent with the anti-correlation between DM and fluence of the entire FRB population. FRB 181118 and FRB 181130 exhibit band-limited features. FRB 181130 is prominently scattered (τs≃8\tau_s\simeq8 ms) at 1.25 GHz. FRB 181017.J0036+11 has full-bandwidth emission with a fluence of 0.042 Jy ms, which is one of the faintest FRB sources detected so far. CRAFTS starts to built a new sample of FRBs that fills the region for more distant and fainter FRBs in the fluence-DME\rm DM_E diagram, previously out of reach of other surveys. The implied all sky event rate of FRBs is 1.24−0.90+1.94×1051.24^{+1.94}_{-0.90} \times 10^5 sky−1^{-1} day−1^{-1} at the 95%95\% confidence interval above 0.0146 Jy ms. We also demonstrate here that the probability density function of CRAFTS FRB detections is sensitive to the assumed intrinsic FRB luminosity function and cosmological evolution, which may be further constrained with more discoveries.Comment: 9 Pages, 4 Plots and 1 Table. The Astrophysical Journal Letter Accepte

    FAST observations of an extremely active episode of FRB 20201124A: III. Polarimetry

    Full text link
    As the third paper in the multiple-part series, we report the statistical properties of radio bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio telescope (FAST) during an extremely active episode between the 25th and the 28th of September 2021 (UT). We focus on the polarisation properties of 536 bright bursts with S/N>50\mathrm{S/N}>50. We found that the Faraday rotation measures (RMs) monotonically dropped from −579 rad m−2-579 \ {\rm rad \ m^{-2}} to −605 rad m−2-605 \ {\rm rad \ m^{-2}} in the 4-day window. The RM values were compatible with the values (−300-300 to −900 rad m−2-900\ {\rm rad \ m^{-2}} ) reported 4 month ago (Xu et al. 2022). However, the RM evolution rate in the current observation window was at least an order of magnitude smaller than the one ($\sim 500\ {\rm rad \ m^{-2}\, day^{-1}})previouslyreportedduringtherapidRM−variationphase,butisstillhigherthantheone() previously reported during the rapid RM-variation phase, but is still higher than the one (\le 1\ {\rm rad \ m^{-2} day^{-1}})duringthelaterRMno−evolutionphase.TheburstsofFRB20201124Awerehighlypolarisedwiththetotaldegreeofpolarisation(circularpluslinear)greaterthan90polarisationpositionangles(PAs),degreeoflinearpolarisation( ) during the later RM no-evolution phase. The bursts of FRB 20201124A were highly polarised with the total degree of polarisation (circular plus linear) greater than 90% for more than 90\% of all bursts. The distribution of linear polarisation position angles (PAs), degree of linear polarisation (L/I),anddegreeofcircularpolarisation(), and degree of circular polarisation (V/I)canbecharacterisedwithunimodaldistributionfunctions.Duringtheobservationwindow,thedistributionsbecamewiderwithtime,i.e.withlargerscatter,butthecentroidsofthedistributionfunctionsremainednearlyconstant.Forindividualbursts,significantPAvariations(confidencelevel5−) can be characterised with unimodal distribution functions. During the observation window, the distributions became wider with time, i.e. with larger scatter, but the centroids of the distribution functions remained nearly constant. For individual bursts, significant PA variations (confidence level 5-\sigma$) were observed in 33% of all bursts. The polarisation of single pulses seems to follow certain complex trajectories on the Poincar\'e sphere, which may shed light on the radiation mechanism at the source or the plasma properties along the path of FRB propagation.Comment: 25 pages, 16 figures. Accepted by Research in Astronomy and Astrophysics (RAA
    • …
    corecore