1,351 research outputs found

    Blip glitches in Advanced LIGO data

    Get PDF
    Blip glitches are short noise transients present in data from ground-based gravitational-wave observatories. These glitches resemble the gravitational-wave signature of massive binary black hole mergers. Hence, the sensitivity of transient gravitational-wave searches to such high-mass systems and other potential short duration sources is degraded by the presence of blip glitches. The origin and rate of occurrence of this type of glitch have been largely unknown. In this paper we explore the population of blip glitches in Advanced LIGO during its first and second observing runs. On average, we find that Advanced LIGO data contains approximately two blip glitches per hour of data. We identify four subsets of blip glitches correlated with detector auxiliary or environmental sensor channels, however the physical causes of the majority of blips remain unclear

    The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment

    Get PDF
    Myocardial infarction (MI) is the leading cause of death in Western countries. Epidemiological studies show acute MI to be more prevalent in the morning and to be associated with a poorer outcome in terms of mortality and recovery. The mechanisms behind this association are not fully understood. Here, we report that circadian oscillations of neutrophil recruitment to the heart determine infarct size, healing, and cardiac function after MI Preferential cardiac neutrophil recruitment during the active phase (Zeitgeber time, ZT13) was paralleled by enhanced myeloid progenitor production, increased circulating numbers of CXCR2(hi) neutrophils as well as upregulated cardiac adhesion molecule and chemokine expression. MI at ZT13 resulted in significantly higher cardiac neutrophil infiltration compared to ZT5, which was inhibited by CXCR2 antagonism or neutrophil-specific CXCR2 knockout. Limiting exaggerated neutrophilic inflammation at this time point significantly reduced the infarct size and improved cardiac function

    Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory

    Get PDF
    Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle θm between active and sterile neutrinos must satisfy, roughly, θm≲1.5×10-6(MX/109 GeV)-2 for a mass MX of the dark-matter particle between 108 GeV and 1011 GeV

    Radio measurements of the depth of air-shower maximum at the Pierre Auger Observatory

    Get PDF
    The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 17 km2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 30-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (Xmax), a probe for mass composition, at cosmic-ray energies between 1017.5 and 1018.8 eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio Xmax reconstruction by comparison to dedicated sets of corsika/coreas air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio Xmax resolution as a function of energy, reaching a resolution better than 15 g cm-2 at the highest energies, demonstrating that radio Xmax measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory

    AugerPrime surface detector electronics

    Get PDF
    Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of the first commissioning data will also be presented

    Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory

    Get PDF
    We show, for the first time, radio measurements of the depth of shower maximum (Xmax) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence dataset, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio Xmax resolution as a function of energy and demonstrate the ability to make competitive high-resolution Xmax measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments

    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

    Get PDF
    Lorentz invariance violation (LIV) is often described by dispersion relations of the form E i2 = m i2+p i2+δi,n E 2+n with delta different based on particle type i, with energy E, momentum p and rest mass m. Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients δi,n tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as they propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 1019 eV, we obtain δγ,0 \u3e -10-21, δγ,1 \u3e -10-40 eV-1 and δγ,2 \u3e -10-58 eV-2 in the case of a subdominant proton component up to 1020 eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as δhad,0 \u3c 10-19, δhad,1 \u3c 10-38 eV-1 and δhad,2 \u3c 10-57 eV-2 at 5σ CL

    Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory

    Get PDF
    The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation. We find that a model containing a flux contribution from the starburst galaxy catalog of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of 10 EV provides a fair simultaneous description of all three observables. The starburst galaxy model is favored with a significance of 4.5σ (considering experimental systematic effects) compared to a reference model with only homogeneously distributed background sources. By investigating a scenario with Centaurus A as a single source in combination with the homogeneous background, we confirm that this region of the sky provides the dominant contribution to the observed anisotropy signal. Models containing a catalog of jetted active galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they cannot adequately describe the measured arrival directions

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure
    • …
    corecore