29 research outputs found

    TRENDS AND DEVELOPMENT IN CHIRONOMID PALAEOECOLOGY: SUMMARY FROM THE

    Get PDF
    -

    Renal nerves contribute to hypertension in Schlager BPH/2J mice

    Get PDF
    Schlager mice (BPH/2J) are hypertensive due to a greater contribution of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). The kidneys of BPH/2J are hyper-innervated suggesting renal nerves may contribute to the hypertension. We therefore determined the effect of bilateral renal denervation (RD) on hypertension in BPH/2J. Mean arterial pressure (MAP) was measured by radiotelemetry before and for 3 weeks after RD in BPH/2J and BPN/3J. The effects of pentolinium and enalaprilat were examined to determine the contribution of the SNS and RAS, respectively. After 3 weeks, MAP was −10.9 ± 2.1 mmHg lower in RD BPH/2J compared to baseline and −2.1 ± 2.2 mmHg in sham BPH/2J (P < 0.001, n = 8–10). RD had no effect in BPN/3J (P > 0.1). The depressor response to pentolinium was greater in BPH/2J than BPN/3J, but in both cases the response in RD mice was similar to sham. Enalaprilat decreased MAP more in RD BPH/2J compared to sham (−12 vs −3 mmHg, P < 0.001) but had no effect in BPN/3J. RD reduced renal noradrenaline in both strains but more so in BPH/2J. RD reduced renin mRNA and protein, but not plasma renin in BPH/2J to levels comparable with BPN/3J mice. We conclude that renal nerves contribute to hypertension in BPH mice as RD induced a sustained fall in MAP, which was associated with a reduction of intrarenal renin expression. The lack of inhibition of the depressor effects of pentolinium and enalaprilat by RD suggests that vasoconstrictor effects of the SNS or RAS are not involved

    Responses of microbial phototrophs to late-Holocene environmental forcing of lakes in south-west Greenland

    Get PDF
    1. The biological structure of arctic lakes is changing rapidly, apparently in response to global change processes such as increasing air temperatures, although altered nutrient stoichiometry may also be an important driver. Equally important, however, are local factors (e.g. landscape setting, hydrological linkages and trophic interactions) that may mediate responses of individual lakes at the regional scale. Despite general acknowledgement of the importance of local factors, there has been little focus on among-lake variability in the response to environmental change. 2. Sedimentary pigments, organic carbon and nitrogen, and biogenic silica (BSi) in 210Pb and 14C-dated sediment cores from three contrasting lakes in the Kangerlussuaq area (c. 67°N, 51°W) of south-west Greenland were used to reconstruct algal and phototrophic bacterial ecological change during the late-Holocene. Water chemistry for the individual lakes varies in terms of conductivity (range: 30– 3000 μS cm−1) and stratification regimes (cold monomictic, dimictic and meromictic), linked with their position along the regional climate gradient from the coast and to the present ice sheet margin. 3. Despite essentially similar regional climate forcing over the last c. 1000 years, marked differences among lake types were observed in the phototrophic communities and their temporal variability. Considerable short-term variability occurred in an oligosaline, meromictic lake (SS1371), dominated by purple sulfur bacterial pigments, most likely due to a tight coupling between the position of the chemocline and the phototrophic community. Communities in a lake (SS86) located on a nunatak, just beyond the edge of the present ice sheet shifted in a nonlinear pattern, approximately 1000 cal. years BP, possibly due to lake-level lowering and loss of outflow during the Medieval Climate Anomaly. This regime shift was marked by a substantial expansion of green sulfur bacteria. 4. A dilute, freshwater coastal lake (SS49) dominated by benthic algae was relatively stable until ca. 1900 AD when rates of community change began to increase. These changes in benthic algal pigments are correlated with substantial declines (1.3–0.44‰) in δ15N that are indicative of increased deposition of atmospheric inputs of industrially derived NOx into the atmosphere. 5. Climate control on lake ecosystem functioning has been assumed to be particularly important in the Arctic. This study, however, illustrates a complex spatial response to climate forcing at the regional scale and emphasizes differences in the relative importance of changes in the mass (m, both precipitation and nutrients) and energy flux (E) to lakes for the phototrophic community structure of low-arctic Greenland lakes

    Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume

    No full text
    River-dominated coastal areas are typically sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients and organic matter. To examine the spatial variability and relationship between river discharge, phytoplankton, and organic carbon distributions, we analyzed surface water and sediment from the Louisiana shelf adjacent to the Mississippi River. Samples were collected during April and October 2000 to capture high and low river discharge, and were analyzed for dissolved and particulate organic carbon (DOC and POC), nutrients, and phytoplankton pigments. Pigments, determined by high performance liquid chromatography (HPLC), were also analyzed from sediment to evaluate marine carbon inputs to the seafloor. DOC in surface waters was generally within 200-300 mu M, ranging up to 399 mu M. Chlorophyll a ranged from below the limits of detection (BLD) up to 31 nM in surface waters, with higher values located further from the river mouth during high flow. Although community diversity increased during low discharge, diatoms dominated the phytoplankton population (50-80% of the community throughout the study) and consequently made more important contributions than other species to both the DOC and POC pools. Chlorophyll and degradation products (indicative of zooplankton grazing) observed in surface sediment indicated a transfer of autochthonous carbon from the highly productive photic zone to the sediment, coupling phytoplankton-derived POC in surface waters with organic carbon deposition in surface sediment. Cross-shelf changes in chlorophyll indicated a westward transport of phytoplankton that was directly and indirectly linked with river discharge and pigment decay dynamics. (c) 2006 Elsevier Ltd. All rights reserved

    Development and application of sedimentary pigments for assessing effects of climatic and environmental changes on subarctic lakes in northern Sweden

    No full text
    A surface-sediment survey of pigments in 100 lakes in the Scandes Mountains, northern Sweden, was combined with a reconstruction of Holocene sedimentary pigments from Lake Seukokjaure to assess the major factors regulating phototrophic communities, and how these controls may have changed during the period from the deglaciation (similar to 9700 cal. years BP) to the present. The study area covers a pronounced gradient of temperature and precipitation, and encompasses the subarctic tree line, an important ecotonal boundary in this region. Lake Seukokjaure is located in a presently treeless basin close to the modern tree line. The spatial survey of sedimentary pigments was analyzed using principle components analysis (PCA) and redundancy analysis (RDA). PCA explained 73-83% of variance in pigment abundance and composition, whereas RDA explained 22-32% of variation in fossil assemblages. Dissolved organic carbon (DOC) content of lake water, sediment delta C-13, maximum lake depth, elevation and lake-water conductivity were all identified as environmental variables with significant association with pigment abundances in the spatial survey, although phototrophic communities of lakes situated in different vegetation zones (alpine, birch, conifer/birch) were incompletely distinguished by the ordinations. In the RDAs, the primary pigment variability occurred along a production gradient that was correlated negatively to water-column DOC content and delta C-13 signature of sediments. This pattern suggested that the important controls of primary production were light regime and terrestrial supplies of C-13-depleted carbon. In contrast, depth, elevation and conductivity were found to be more important for the differentiation of the phototrophic community composition. Application of these spatial survey results to the Holocene sediment record of Lake Seukokjaure demonstrated the importance of DOC for the temporal development of the lake, from an early state of high production to a period of slight oligotrophication. In general, the algal changes were regulated by the interaction of DOC and conductivity, although transitions in the phototrophic community during the late Holocene were less easily interpreted. Terrestrial vegetation development thus appears to be of utmost importance for the regulation of primary production in oligotrophic alpine and subarctic lakes and climate impacts on lakes, whereas other basin-specific factors may control the ontogeny of algal community composition
    corecore