3 research outputs found

    Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations

    Get PDF
    The main problem in the operation of micro-grids is controlling the voltage and frequency. The inertia of the whole grid is low, so the operation of the system is interrupted by sudden changes in load or incidence in the absence of a proper control system. In order to solve this issue, various control structures have been proposed. In this paper, an optimal distributed control strategy for coordinating multiple distributed generation instances is presented in an islanded microgrid. A secondary frequency control method is implemented in order to eliminate voltage deviation and reduce the small signal error. In this layer, an optimized PID controller is used. PID controller optimization is carried out via the Honey Badger Algorithm, and results are obtained using the MATLAB software. According to the results, inadequate adjustment of a secondary loop leads to poor and unacceptable outcomes, and the necessary power quality is not achieved. However, by using the proposed method, a proper performance of the microgrid in the face of disturbances is achieved

    Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm

    No full text
    This article presents a new method based on meta-heuristic algorithm for maximum power point tracking (MPPT) in photovoltaic systems. In this new method, the SALP Swarm Algorithm (SSA) is used instead of classic methods such as the Perturb and Observe (P&O) method. In this method, the value of the duty cycle is optimally determined in an optimization problem by SSA in order to track the maximum power. The objective function in this problem is maximizing the output power of the photovoltaic system. The proposed method has been applied on a photovoltaic system connected to the load, taking into account the effect of partial shade and different atmospheric conditions. The SSA method is compared with the Particle Swarm Optimization (PSO) algorithm and P&O methods. Additionally, we evaluated the effect of changes in temperature and radiation on solving the problem. The results of the simulation in the MATLAB/Simulink environment show the optimal performance of the proposed method in tracking the maximum power in different atmospheric conditions compared to other methods. To validate the proposed algorithm, it is compared with four important indexes: ISE, ITSE, IAE, and ITAE
    corecore