16 research outputs found

    Discrimination between Translesion Synthesis and Template Switching during Bypass Replication of Thymine Dimers in Duplex DNA

    Get PDF
    The goal of this study was to determine whether bypass replication occurs by translesion synthesis or template switching (copy choice) when a duplex molecule carrying a single cis,syn-cyclobutane thymine dimer is replicated in vitro by human cell extracts. Circular heteroduplex DNA molecules were constructed to contain the SV40 origin of replication and a mismatch opposite to or nearby the dimer. Control molecules with only the mismatch were also prepared. Heteroduplexes were methylated at CpG islands and replicated in vitro (30 min). Following bisulfite treatment, the nascent DNA complementary to the dimer-containing template was distinguished from the other three strands by methylation-specific polymerase chain reaction. Cloning and sequencing of polymerase chain reaction products revealed that 80-98% carried the sequence predicted for translesion synthesis, with two adenines incorporated opposite the dimer. The fraction of clones with sequence predictive of template switching was reduced when extracts deficient in mismatch repair or nucleotide excision repair activities were used to replicate the heteroduplex molecules. These results support the conclusion that lesion bypass during in vitro replication of duplex DNA containing thymine dimers occurs by translesion synthesis

    Rational Manual and Automated Scoring Thresholds for the Immunohistochemical Detection of TP53 Missense Mutations in Human Breast Carcinomas

    Get PDF
    Missense mutations in TP53 are common in human breast cancer, have been associated with worse prognosis, and may predict therapy effect. TP53 missense mutations are associated with aberrant accumulation of p53 protein in tumor cell nuclei. Previous studies have used relatively arbitrary cutoffs to characterize breast tumors as positive for p53 staining by immunohistochemical assays. This study aimed to objectively determine optimal thresholds for p53 positivity by manual and automated scoring methods utilizing whole tissue sections from the Carolina Breast Cancer Study. P53 immunostained slides were available for 564 breast tumors previously assayed for TP53 mutations. Average nuclear p53 staining intensity was manually scored as negative, borderline, weak, moderate, or strong and percentage of positive tumor cells was estimated. Automated p53 signal intensity was measured using the Aperio nuclear v9 algorithm combined with the GenieĀ® histology pattern recognition tool and tuned to achieve optimal nuclear segmentation. ROC curve analysis was performed to determine optimal cutoffs for average staining intensity and percent cells positive to distinguish between tumors with and without a missense mutation. ROC curve analysis demonstrated a threshold of moderate average nuclear staining intensity as a good surrogate for TP53 missense mutations in both manual (AUC=0.87) and automated (AUC=0.84) scoring systems. Both manual and automated immunohistochemical scoring methods predicted missense mutations in breast carcinomas with high accuracy. Validation of the automated intensity scoring threshold suggests a role for such algorithms in detecting TP53 missense mutations in high throughput studies

    Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Get PDF
    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway

    Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe's disease: Present convictions and future prospects: BMT-Lentiviral Vectors Therapy for Krabbe's Disease

    Get PDF
    Currently, presymtomatic hematopoietic stem and progenitor cell transplantation (HSPCT) is the only therapeutic modality that alleviates Krabbe's disease (KD)ā€induced central nervous system damage. However, all HSPCTā€treated patients exhibit severe deterioration in peripheral nervous system function characterized by major motor and expressive language pathologies. We hypothesize that a combination of several mechanisms contribute to this phenomenon, including 1) nonoptimal conditioning protocols with consequent inefficient engraftment and biodistribution of donorā€derived cells and 2) insufficient uptake of donor cellā€secreted galactocerebrosidease (GALC) secondary to a naturally low expression level of the cationā€independent mannose 6ā€phosphateā€receptor (CIā€MPR). We have characterized the effects of a busulfan (Bu) based conditioning regimen on the efficacy of HSPCT in prolonging twi mouse average life span. There was no correlation between the efficiency of bone marrow engraftment of donor cells and twi mouse average life span. HSPCT prolonged the average life span of twi mice, which directly correlated with the aggressiveness of the Buā€mediated conditioning protocols. HSPC transduced with lentiviral vectors carrying the GALC cDNA under control of cellā€specific promoters were efficiently engrafted in twi mouse bone marrow. To facilitate HSPCTā€mediated correction of GALC deficiency in target cells expressing low levels of CIā€MPR, a novel GALC fusion protein including the ApoE1 receptor was developed. Efficient cellular uptake of the novel fusion protein was mediated by a mannoseā€6ā€phosphateā€independent mechanism. The novel findings described here elucidate some of the cellular mechanisms that impede the cure of KD patients by HSPCT and concomitantly open new directions to enhance the therapeutic efficacy of HSPCT protocols for KD. Ā© 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc

    Effects of Tumor Microenvironment Heterogeneity on Nanoparticle Disposition and Efficacy in Breast Cancer Tumor Models

    Get PDF
    Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy

    MERTK receptor tyrosine kinase is a therapeutic target in melanoma

    Get PDF
    Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies

    Assessment of 18F-PBR-111 in the Cuprizone Mouse Model of Multiple Sclerosis

    No full text
    The study aims to assess site assessment of the performance of 18F-PBR-111 as a neuroinflammation marker in the cuprizone mouse model of multiple sclerosis (MS). 18F-PBR-111 PET imaging has not been well evaluated in multiple sclerosis applications both in preclinical and clinical research. This study will help establish the potential utility of 18F-PBR-111 PET in preclinical MS research and future animal and future human applications. 18F-PBR-111 PET/CT was conducted at 3.5 weeks (n = 7) and 5.0 weeks (n = 7) after cuprizone treatment or sham control (n = 3) in the mouse model. A subgroup of mice underwent autoradiography with cryosectioned brain tissue. T2 weighted MRI was performed to obtain the brain structural data of each mouse. 18F-PBR-111 uptake was assessed in multiple brain regions with PET and autoradiography images. The correlation between autoradiography and immunofluorescence staining of neuroinflammation (F4/80 and CD11b) was measured. Compared to control mice, significant 18F-PBR-111 uptake in the corpus callosum (p < 0.001), striatum (caudate and internal capsule, p < 0.001), and hippocampus (p < 0.05) was identified with PET images at both 3.5 weeks and 5.0 weeks, and validated with autoradiography. No significant uptake differences were detected between 3.5 weeks and 5.0 weeks assessing these regions as a whole, although there was a trend of increased uptake at 5.0 weeks compared to 3.5 weeks in the CC. High 18F-PBR-111 uptake regions correlated with microglial/macrophage locations by immunofluorescence staining with F4/80 and CD11b antibodies. 18F-PBR-111 uptake in anatomic locations correlated with activated microglia at histology in the cuprizone mouse model of MS suggests that 18F-PBR-111 has potential for in vivo evaluation of therapy response and potential for use in MS patients and animal studies
    corecore