13 research outputs found

    Π˜Π—Π£Π§Π•ΠΠ˜Π• Π’ΠžΠ—ΠœΠžΠ–ΠΠžΠ‘Π’Π˜ ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π― ΠœΠ•Π’ΠžΠ”Π ΠœΠΠ›ΠžΠ£Π“Π›ΠžΠ’ΠžΠ“Πž Π ΠΠ‘Π‘Π•Π―ΠΠ˜Π― Π›ΠΠ—Π•Π ΠΠžΠ“Πž БВЕВА Π”Π›Π― ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π― ΠŸΠžΠ”Π›Π˜ΠΠΠžΠ‘Π’Π˜ ΠΠšΠ’Π˜Π’ΠΠžΠ“Πž Π€ΠΠ ΠœΠΠ¦Π•Π’Π’Π˜Π§Π•Π‘ΠšΠžΠ“Πž Π˜ΠΠ“Π Π•Π”Π˜Π•ΠΠ’Π ΠΠΠΠ€Π•Π ΠžΠΠ Π”Π•Π’Π‘ΠšΠžΠ“Πž

    No full text
    Low-angle laser light scattering (laser light diffraction, GPM. 1.2.1.0008.15, SP RFXIII Ed.) revealed the differences in particle size distribution in the study solutions of Anaferon for children, a drug product, and solutions of the respective controls. Percentage of the differences between extinction coefficients (Ξ΅) of the drug and Ξ΅ of the respective controls varied form 4.4% to 10.5% (different days, two series of samples and controls). The study results may serve as a basis for assessing the suitability of this method for identification of active pharmaceutical ingredient (API) of Anaferon for children and APIs of other released-active drugs.Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΌΠ°Π»ΠΎΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ рассСяния Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ свСта (Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ свСта, ОЀБ.1.2.1.0008.15, Π“Π€ Π Π€ XIII) Π±Ρ‹Π»ΠΈ выявлСны отличия Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… распрСдСлСний частиц Π² исслСдуСмых растворах лСкарствСнного ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π°Π½Π°Ρ„Π΅Ρ€ΠΎΠ½ дСтский ΠΈ растворах ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΉ. ΠŸΡ€ΠΎΡ†Π΅Π½Ρ‚Ρ‹ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ коэффициСнтов экстинкции (Ξ΅) ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΎΡ‚ Ξ΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΉ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΎΡ‚ 4,4% Π΄ΠΎ 10,5% (Ρ€Π°Π·Π½Ρ‹Π΅ Π΄Π½ΠΈ, Π΄Π²Π΅ сСрии ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΉ). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ настоящСго исслСдования ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ основой для Π±ΠΎΠ»Π΅Π΅ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½Ρ‹Ρ… исслСдований ΠΎΡ†Π΅Π½ΠΊΠΈ пригодности Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для опрСдСлСния подлинности Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ фармацСвтичСского ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚Π° (АЀИ) Π°Π½Π°Ρ„Π΅Ρ€ΠΎΠ½Π° дСтского ΠΈ АЀИ Π΄Ρ€ΡƒΠ³ΠΈΡ…Ρ€Π΅Π»ΠΈΠ·-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²

    Π˜Π—Π£Π§Π•ΠΠ˜Π• Π’ΠžΠ—ΠœΠžΠ–ΠΠžΠ‘Π’Π˜ ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π― ΠœΠ•Π’ΠžΠ”Π ΠœΠΠ›ΠžΠ£Π“Π›ΠžΠ’ΠžΠ“Πž Π ΠΠ‘Π‘Π•Π―ΠΠ˜Π― Π›ΠΠ—Π•Π ΠΠžΠ“Πž БВЕВА Π”Π›Π― ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π― ΠŸΠžΠ”Π›Π˜ΠΠΠžΠ‘Π’Π˜ ΠΠšΠ’Π˜Π’ΠΠžΠ“Πž Π€ΠΠ ΠœΠΠ¦Π•Π’Π’Π˜Π§Π•Π‘ΠšΠžΠ“Πž Π˜ΠΠ“Π Π•Π”Π˜Π•ΠΠ’Π ΠΠΠΠ€Π•Π ΠžΠΠ Π”Π•Π’Π‘ΠšΠžΠ“Πž

    No full text
    Low-angle laser light scattering (laser light diffraction, GPM. 1.2.1.0008.15, SP RFXIII Ed.) revealed the differences in particle size distribution in the study solutions of Anaferon for children, a drug product, and solutions of the respective controls. Percentage of the differences between extinction coefficients (Ξ΅) of the drug and Ξ΅ of the respective controls varied form 4.4% to 10.5% (different days, two series of samples and controls). The study results may serve as a basis for assessing the suitability of this method for identification of active pharmaceutical ingredient (API) of Anaferon for children and APIs of other released-active drugs.Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΌΠ°Π»ΠΎΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ рассСяния Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ свСта (Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ свСта, ОЀБ.1.2.1.0008.15, Π“Π€ Π Π€ XIII) Π±Ρ‹Π»ΠΈ выявлСны отличия Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… распрСдСлСний частиц Π² исслСдуСмых растворах лСкарствСнного ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π°Π½Π°Ρ„Π΅Ρ€ΠΎΠ½ дСтский ΠΈ растворах ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΉ. ΠŸΡ€ΠΎΡ†Π΅Π½Ρ‚Ρ‹ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ коэффициСнтов экстинкции (Ξ΅) ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΎΡ‚ Ξ΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΉ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΎΡ‚ 4,4% Π΄ΠΎ 10,5% (Ρ€Π°Π·Π½Ρ‹Π΅ Π΄Π½ΠΈ, Π΄Π²Π΅ сСрии ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΉ). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ настоящСго исслСдования ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ основой для Π±ΠΎΠ»Π΅Π΅ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½Ρ‹Ρ… исслСдований ΠΎΡ†Π΅Π½ΠΊΠΈ пригодности Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для опрСдСлСния подлинности Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ фармацСвтичСского ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚Π° (АЀИ) Π°Π½Π°Ρ„Π΅Ρ€ΠΎΠ½Π° дСтского ΠΈ АЀИ Π΄Ρ€ΡƒΠ³ΠΈΡ…Ρ€Π΅Π»ΠΈΠ·-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²

    ЛСкарствСнныС ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π½Π° основС Ρ€Π΅Π»ΠΈΠ·-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π»

    No full text
    A number of the released-active drugs with proved safety and efficacy against viral infections, cough, stress and anxiety, brain circulation impairments, metabolic disorders, etc., exist in the pharmaceutical market for more than 15 years. Results of the preclinical studies have revealed some of the aspects of the released-active antibodies action. Nevertheless, the exact mechanism of each drug's action is still a subject of research. The aim of the present review is to investigate the physical-chemical principles of mechanism of action of the released-active drugs.Π‘ΠΎΠ»Π΅Π΅ 15 Π»Π΅Ρ‚ Π½Π° фармацСвтичСском Ρ€Ρ‹Π½ΠΊΠ΅ прСдставлСна Π³Ρ€ΡƒΠΏΠΏΠ° Ρ€Π΅Π»ΠΈΠ·-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² с Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒΡŽ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ вирусных ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ, кашля, стрСсса ΠΈ Ρ‚Ρ€Π΅Π²ΠΎΠ³ΠΈ, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ кровообращСния, расстройств ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΈ Π΄Ρ€. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ доклиничСских исслСдований ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ прСдставлСниС ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… аспСктах дСйствия Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Π² Ρ€Π΅Π»ΠΈΠ·-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ развития эффСктов ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° остаСтся ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ изучСния. ЦСль настоящСго ΠΎΠ±Π·ΠΎΡ€Π° - Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС основы ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° дСйствия Ρ€Π΅Π»ΠΈΠ·-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²

    ΠŸΡ€ΠΎΡ†Π΅ΡΡΡ‹ тСчСния ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ Π² ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½ΠΎΠΌ Ρ‡ΠΈΠΏΠ΅ пассивного смСшивания: ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ цвСтомСтричСский Π°Π½Π°Π»ΠΈΠ·

    No full text
    Objectives. The development of microfluidic systems is one of the promising areas of science and technology. In most procedures performed using microfluidic systems, effective mixing in microfluidic channels of microreactors (chips) is of particular importance, because it has an effect on the sensitivity and speed of analytical procedures. The aim of this study is to describe and evaluate the major parameters of the flow and mixing processes in a passive microfluidic micromixer, and to develop an information-measuring system to monitor the dynamics of flow (mixing) of liquids.Methods. This article provides an overview of the concept of microfluidic mixing chips (micromixers) and their classification, and analyzes the kinds of points of mixing and microfluidic channels for mixing. The article presents the description and calculations of the hydrodynamic similarity criteria (Reynolds, Dean and Peclet numbers), which are the critical parameters for creating and optimizing micromixers (for example, straight and curved channels in the flow rate range between 100 and 1000 Β΅l/min). We have developed an information-measuring system to monitor the dynamics of flow (mixing) of liquids in a microfluidic channel, which consists of a microscope with a digital eyepiece (LOMO MIB, Russia), an Atlas syringe pump (Syrris Ltd., UK) and a passive mixing microfluidic chip of interest (made of clear glass). This system was designed to quickly illustrate the principles of mixing in microfluidic channels of different configurations.Results. The developed system has allowed carrying out a colorimetric analysis of the modes and dynamics of mixing two liquids (5% aqueous solution of azorubine dye and water) at the T-shaped mixing point, at the straight and curved (double-bend shaped) sections of the microfluidic channel of the passive-type micromixer with flow rates varying from 100 to 400 Β΅l/min.Conclusions. According to the obtained calculations, the share of the advective mixing processes (formation of vortex flows and increase in the contact area of the mixed substances) in flowing liquids is significantly higher in curved microchannels. The developed information-measuring system to monitor the dynamics of flow (mixing) of liquids in a microfluidic channel is a convenient tool for optimizing the mixing modes in the channels of micromixers, and for designing new configurations of channels in microchips. It would allow intensifying processes and increasing the performance of microfluidic systems.Π¦Π΅Π»ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… систСм являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· пСрспСктивных Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ развития Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… систСм, Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ эффСктивноС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ Π² ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»Π°Ρ… ΠΌΠΈΠΊΡ€ΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Ρ‡ΠΈΠΏΠΎΠ²), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ влияСт Π½Π° Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ быстроту аналитичСских ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлись описаниС ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° основных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² тСчСния ΠΈ смСшивания Π² ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½ΠΎΠΌ микросмСситСлС пассивного смСшивания ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ систСмы контроля Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ протСкания (ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ) ТидкостСй Π² Π½Π΅ΠΌ.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Данная ΡΡ‚Π°Ρ‚ΡŒΡ содСрТит ΠΎΠ±Π·ΠΎΡ€ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… Ρ‡ΠΈΠΏΠΎΠ² смСшивания (микросмСситСлСй), ΠΈΡ… ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ, обсуТдСны разновидности Ρ‚ΠΎΡ‡Π΅ΠΊ смСшивания ΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² смСшивания. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ описаниС ΠΈ расчСты ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² гидродинамичСского подобия (числа РСйнольдса, ПСклС ΠΈ Π”ΠΈΠ½Π°), ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ критичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ микросмСситСлСй (Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ прямого ΠΈ ΠΈΠ·ΠΎΠ³Π½ΡƒΡ‚ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ скоростСй ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² ΠΎΡ‚ 100 Π΄ΠΎ 1000 ΠΌΠΊΠ»/ΠΌΠΈΠ½). Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ систСма контроля Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ протСкания (ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ) ТидкостСй Π² ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅, состоящая ΠΈΠ· микроскопа с Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹ΠΌ окуляром (Β«Π›ΠžΠœΠžΒ» ΠœΠ˜Π‘, Россия), ΡˆΠΏΡ€ΠΈΡ†Π΅Π²ΠΎΠ³ΠΎ насоса Atlas (Syrris Ltd., ВСликобритания) ΠΈ исслСдуСмого ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½ΠΎΠ³ΠΎ Ρ‡ΠΈΠΏΠ° пассивного смСшивания, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΡ€ΠΎΠ·Ρ€Π°Ρ‡Π½ΠΎΠ³ΠΎ стСкла. Данная систСма ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ Π² ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»Π°Ρ… Ρ€Π°Π·Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ цвСтомСтричСский Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ Π΄Π²ΡƒΡ… ТидкостСй (5% Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора краситСля Π°Π·ΠΎΡ€ΡƒΠ±ΠΈΠ½Π° ΠΈ Π²ΠΎΠ΄Ρ‹) Π² Π’-ΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ смСшивания, Π½Π° прямом ΠΈ ΠΈΠ·ΠΎΠ³Π½ΡƒΡ‚Ρ‹Ρ… (Π² Ρ„ΠΎΡ€ΠΌΠ΅ Π·ΠΌΠ΅Π΅Π²ΠΈΠΊΠ°) участках ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° микросмСситСля пассивного Ρ‚ΠΈΠΏΠ° ΠΏΡ€ΠΈ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ скорости ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² ΠΎΡ‚ 100 Π΄ΠΎ 400 ΠΌΠΊΠ»/ΠΌΠΈΠ½.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Богласно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ расчСтам, доля Π°Π΄Π²Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… процСссов смСшивания (ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΡΠΌΠ΅ΡˆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… вСщСств) Π² ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΡ… Тидкостях сущСствСнно Π²Ρ‹ΡˆΠ΅ Π² ΠΈΠ·ΠΎΠ³Π½ΡƒΡ‚Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΊΠ°Π½Π°Π»Π°Ρ… ΠΌΠΈΠΊΡ€ΠΎΡ‡ΠΈΠΏΠΎΠ². Разработанная ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ систСма контроля Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ протСкания (ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ) ТидкостСй Π² ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅ являСтся ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ инструмСнтом для Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² смСшивания Π² ΠΊΠ°Π½Π°Π»Π°Ρ… микросмСситСлСй ΠΈ для проСктирования Π½ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΠΌΠΈΠΊΡ€ΠΎΡ‡ΠΈΠΏΠ°Ρ…, Ρ‡Ρ‚ΠΎ позволяСт ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСссы ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΡŽΠΈΠ΄Π½Ρ‹Ρ… систСм

    Π ΠΠ—Π ΠΠ‘ΠžΠ’ΠšΠ И Π’ΠΠ›Π˜Π”ΠΠ¦Π˜Π― ΠœΠ•Π’ΠžΠ”Π˜ΠšΠ˜ ΠšΠ˜ΠΠ•Π’Π˜Π§Π•Π‘ΠšΠžΠ™ ΠžΠ¦Π•ΠΠšΠ˜ Π ΠΠ‘Π’Π’ΠžΠ Π•ΠΠ˜Π― Π›Π•ΠšΠΠ Π‘Π’Π’Π•ΠΠΠžΠ™ Π‘Π£Π‘Π‘Π’ΠΠΠ¦Π˜Π˜ ВОПИРАМАВ ΠœΠ•Π’ΠžΠ”ΠžΠœ Π›ΠΠ—Π•Π ΠΠžΠ™ Π”Π˜Π€Π ΠΠšΠ¦Π˜Π˜ БВЕВА

    No full text
    Solubility is the most important quality indicator, reflecting the physicochemical properties of active pharmaceutical ingredients (APIs). Prior to the release of API, solubility is one of the key factors affecting the efficacy and safety of drugs. Therefore, the directed development of new drugs with predetermined properties (drug design) should be basedon solubility of candidate substances and be taken into account when evaluating the bioequivalence of generic drugs branded, including in vitro - in vivo correlation. Given that the pharmacopeia regulation of the test for the solubility of API is reduced to a visual estimate and approximate solubility, we developed a kinetic dissolution evaluation method by laser diffraction and performed statistical analysis of the results obtained under repeatability conditions.Π Π°ΡΡ‚Π²ΠΎΡ€ΠΈΠΌΠΎΡΡ‚ΡŒ - ваТнСйший ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ качСства, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΉ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС свойства Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… фармацСвтичСских ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠ² (АЀИ). ΠŸΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π²Ρ‹ΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ АЀИ, Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΠΈΠΌΠΎΡΡ‚ΡŒ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ лСкарствСнного срСдства. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ направлСнная Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² с Π·Π°Ρ€Π°Π½Π΅Π΅ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ свойствами (drug design) Π΄ΠΎΠ»ΠΆΠ½Π° ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒΡΡ Π² Ρ‚ΠΎΠΌ числС Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ растворимости вСщСств-ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ΠΎΠ² ΠΈ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ биоэквивалСнтности Π΄ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π±Ρ€Π΅Π½Π΄ΠΎΠ²Ρ‹ΠΌ, Π² Ρ‚ΠΎΠΌ числС ΠΏΡ€ΠΈ выявлСнии коррСляции in vitro - in vivo. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΉΠ½ΠΎΠ΅ Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ провСдСния тСста Π½Π° Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΠΈΠΌΠΎΡΡ‚ΡŒ АЀИ сводится ΠΊ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠ΅ ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ растворимости, Π½Π°ΠΌΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° кинСтичСской ΠΎΡ†Π΅Π½ΠΊΠΈ растворСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° статистичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π² условиях повторяСмости

    COVID-19. Liver damage - visualization features and possible causes

    No full text
    Item. To evaluate the features of CT imaging of the liver and the possible causes of pathological changes in COVID-19. Materials and methods. An analysis of the literature and our own data on the features of CT imaging of the liver in combination with biochemical analyzes in patients with COVID-19 was performed. The main possible causes of changes in the liver, as well as symptoms with CT, are examined. Results. The main target of the new SARS-CoV-2 coronavirus is the respiratory system. But among patients with COVID-19, along with damage to the central nervous system, myocardium, and intestines, cases of liver damage or dysfunction have been reported. This is expressed in an increase in biochemical markers of liver damage, as well as in a diffuse decrease in its density during CT, which is usually observed in the acute stage of the disease. Β© 2020 Medical Visualization. All rights reserved

    Mechanical Transformation of Compounds Leading to Physical, Chemical, and Biological Changes in Pharmaceutical Substances

    No full text
    This study demonstrates the link between the modification of the solid-phase pharmaceutical substances mechanical structure and their activity in waters with different molar ratio Β«deuterium-protiumΒ». Mechanochemical transformation of the powders of lactose monohydrate and sodium chloride as models of nutrients and components of dosage forms was investigated by the complex of physicochemical and biological methods. The solubility and kinetic activity of substances dispersed in various ways showed a positive correlation with the solvent isotope profile. Substances dissolved in heavy water were more active than solutes in natural water. Differential IR spectroscopy confirmed the modification of substituents in the sample of lactose monohydrate, demonstrating physicochemical changes during mechanical intervention. The biological activity of the compounds was determined by the method of Spirotox. The activation energy was determined by Arrhenius. Compared with the native compound, dispersed lactose monohydrate showed lower activation energy and, therefore, greater efficiency. In conclusion, proposed data confirm the statement that mechanical changes in compounds can lead to physicochemical changes that affect chemical and biological profiles. Β© 2018 A. V. Syroeshkin et al

    Age-associated murine cardiac lesions are attenuated by the mitochondria-targeted antioxidant SkQ1

    No full text
    Age-related changes in mammalian hearts often result in cardiac hypertrophy and fibrosis that are preceded by inflammatory infiltration. In this paper, we show that lifelong treatment of BALB/c and C57BL/6 mice with the mitochondria-targeted antioxidant SkQ1 retards senescence-associated myocardial disease (cardiomyopathy), cardiac hypertrophy, and diffuse myocardial fibrosis. To investigate the molecular basis of the action of SkQ1, we have applied DNA microarray analysis. The global gene expression profile in heart tissues was not significantly affected by administration of SkQ1. However, we found some small but statistically significant modifications of the pathways related to cellto-cell contact, adhesion, and leukocyte infiltration. Probably, SkQ1-induced decrease in leukocyte and mesenchymal cell adhesion and/or infiltration lead to a reduction in age-related inflammation and subsequent fibrosis. The data indicate a causative role of mitochondrial reactive oxygen species in cardiovascular aging and imply that SkQ1 has poteential as a drug against age-related cardiac dysfunction
    corecore