24 research outputs found

    Mutation in exon 1a of PLEC, leading to disruption of plectin isoform 1a, causes autosomal-recessive skin-only epidermolysis bullosa simplex

    Get PDF
    PLEC, the gene encoding the cytolinker protein plectin, has eight tissue-specific isoforms in humans, arising by alternate splicing of the first exon. To date, all PLEC mutations that cause epidermolysis bullosa simplex (EBS) were found in exons common to all isoforms. Due to the ubiquitous presence of plectin in mammalian tissues, EBS from recessive plectin mutations is always associated with extracutaneous involvement including muscular dystrophy, pyloric atresia and cardiomyopathy. We studied a consanguineous family with sisters having isolated blistering suggesting EBS. Skin disease started with foot blisters at walking age and became generalized at puberty while sparing mucous membranes. DNA sequencing revealed a homozygous nonsense mutation (c.46C>T; p.Arg16X) in the first exon of the plectin variant encoding plectin isoform 1a (P1a). Immunofluorescence antigen mapping, transmission electron microscopy, western blot analysis and qRT-PCR were performed on patient skin and cultured keratinocytes, control myocardium and striated muscle samples. We found hypoplastic hemidesmosomes and intra-epidermal ‘pseudo-junctional' cleavage fitting EBS. Screening for cardiomyopathy and muscle dystrophy showed no abnormalities. We report the first cases of autosomal-recessive EBS from P1a deficiency affecting skin, while mucous membranes, heart and muscle are spared. The dominant expression of the P1a isoform in epidermal basal cell layer and cultured keratinocytes suggests that mutations in the first exon of isoform 1a cause skin-only EBS without extracutaneous involvement. Our study characterizes yet another of the eight isoforms of plectin and adds a tissue-specific phenotype to the spectrum of ‘plectinopathies' produced by mutations of unique first exons of this gen

    Comparison of Two Diagnostic Assays for Anti-Laminin 332 Mucous Membrane Pemphigoid

    Get PDF
    Anti-laminin 332 mucous membrane pemphigoid (MMP) is an autoimmune blistering disease characterized by predominant mucosal lesions and autoantibodies against laminin 332. The exact diagnosis of anti-laminin 332 MMP is important since nearly 30% of patients develop solid cancers. This study compared two independently developed diagnostic indirect immunofluorescence (IF) tests based on recombinant laminin 332 expressed in HEK239 cells (biochip mosaic assay) and the migration trails of cultured keratinocytes rich in laminin 332 (footprint assay). The sera of 54 anti-laminin 332 MMP, 35 non-anti-laminin 332 MMP, and 30 pemphigus vulgaris patients as well as 20 healthy blood donors were analyzed blindly and independently. Fifty-two of 54 and 54/54 anti-laminin 332 MMP sera were positive in the biochip mosaic and the footprint assay, respectively. In the 35 non-anti-laminin 332 MMP sera, 3 were positive in both tests and 4 others showed weak reactivity in the footprint assay. In conclusion, both assays are easy to perform, highly sensitive, and specific, which will further facilitate the diagnosis of anti-laminin 332 MMP

    Disruption of tuftelin 1, a desmosome associated protein, causes skin fragility, woolly hair and palmoplantar keratoderma

    Get PDF
    Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss of function variants in desmosomal genes lead to a variety of skin and heart related phenotypes. Here, we report tuftelin 1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair and mild palmoplantar keratoderma, but without a cardiac phenotype, we identified a homozygous splice site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of tuftelin 1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that tuftelin 1 is positioned within the desmosome and its location dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1 knock-out mouse model mimicked the patients' phenotypes. Altogether, this study reveals tuftelin 1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair and palmoplantar keratoderma

    Disruption of tuftelin 1, a desmosome associated protein, causes skin fragility, woolly hair and palmoplantar keratoderma

    Get PDF
    Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss of function variants in desmosomal genes lead to a variety of skin and heart related phenotypes. Here, we report tuftelin 1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair and mild palmoplantar keratoderma, but without a cardiac phenotype, we identified a homozygous splice site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of tuftelin 1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that tuftelin 1 is positioned within the desmosome and its location dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1 knock-out mouse model mimicked the patients' phenotypes. Altogether, this study reveals tuftelin 1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair and palmoplantar keratoderma.</p

    Cell division: control of the chromosomal passenger complex in time and space

    Get PDF

    Natural Gene Therapy May Occur in All Patients with Generalized Non-Herlitz Junctional Epidermolysis Bullosa with COL17A1 Mutations

    Get PDF
    Mutations in the type XVII collagen gene (COL17A1) result in the blistering disorder non-Herlitz junctional epidermolysis bullosa (JEB-nH). The incidence of revertant mosaicism, also called “natural gene therapy”, was identified in a cohort of 14 patients with JEB-nH caused by COL17A1 mutations in the Netherlands. Five different in vivo reversions, all correcting the germ-line COL17A1 mutation c.2237delG in exon 30, were found in four mosaic JEB-nH patients. The correcting DNA changes involved a wide variety of somatic mutations, from which an indel mutation (c.2228-101_2263+70delins15) and a large deletion of 2,165 base pairs (c.2227+153_2336-318del) have not been previously observed in patients with revertant mosaicism. Our results show that there is no preference for a repair mechanism. Moreover, revertant mosaicism was confirmed on a DNA level in 6 out of 10 generalized JEB-nH patients. Further, photo-material and clinical history of the other four generalized JEB-nH patients demonstrated that each patient has revertant skin patches. In contrast, revertant mosaicism was not detected in the four localized JEB-nH patients. The fact that so many, if not all, generalized JEB-nH COL17A1 patients have revertant patches offers opportunities for cell therapies in which the patient's own naturally corrected cells are used as a source

    Multiple Correcting COL17A1 Mutations in Patients with Revertant Mosaicism of Epidermolysis Bullosa

    Get PDF
    Revertant mosaicism by somatic reversion of inherited mutations has been described for a number of genetic diseases. Several mechanisms can underlie this reversion process, such as gene conversion, crossing-over, true back mutation, and second-site mutation. Here, we report the occurrence of multiple corrections in two unrelated probands with revertant mosaicism of non-Herlitz junctional epidermolysis bullosa, an autosomal recessive genodermatosis due to mutations in the COL17A1 gene. Immunofluorescence microscopy and laser dissection microscopy, followed by DNA and RNA analysis, were performed on skin biopsy specimens. In patient 1, a true back mutation, 3781T→C, was identified in the specimen from the arm, and a second-site mutation, 4463-1G→A, which compensated for the frameshift caused by the inherited 4424-5insC mutation, was identified in the 3′ splice site of exon 55 in a specimen from the middle finger. Patient 2 showed—besides two distinct gene conversion events in specimens from the arm and hand sites, both of which corrected the 1706delA mutation—a second-site mutation (3782G→C) in an ankle specimen, which prevented the premature ending of the protein by the 3781C→T nonsense mutation (R1226X). Thus, both inherited mutations, paternal as well as maternal, reverted at least once by different reversion events in distinct cell clusters in the described patients. The occurrence of multiple correcting mutations within the same patient indicates that in vivo reversion is less unusual than was generally thought. Furthermore, in the male patient, mosaic patterns of type XVII collagen–positive keratinocytes were present in clinically unaffected and affected skin. This latter observation makes it likely that reversion may be overlooked and may happen more often than expected

    Particle Bombardment of Ex Vivo Skin to Deliver DNA and Express Proteins

    No full text
    Particle bombardment of gold microparticles coated with plasmids, which are accelerated to high velocity, is used for transfection of cells within tissue. Using this method, cDNA encoding proteins of interest introduced into ex vivo living human skin enables studying of proteins of interest in real time. Here, technical aspects of particle bombardment of ex vivo skin are described using green fluorescent protein (GFP) as readout for efficiency. This method can be applied on numerous tissues, including in living model animals.</p

    Revertant Mosaicism Due to a Second-Site Mutation in COL7A1 in a Patient with Recessive Dystrophic Epidermolysis Bullosa

    Get PDF
    Despite the high incidence of revertant mosaicism (35%) in patients with the genetic skin disease epidermolysis bullosa (EB) due to correcting mutations in the genes COL17A1 and LAMB3, revertant mosaicism has not been described for COL7A1 until recently. Mutations in COL7A1 are responsible for the most devastating form of EB in adults, which is characterized by cocooned "mitten" deformities of the hands. This report shows in vivo reversion of an inherited COL7A1 mutation in a patient with recessive dystrophic EB who was homozygous for the frameshift mutation COL7A1: c.6527insC,p.2176FsX337. The patient exhibited a patch of clinically healthy revertant skin on her left forearm. The second-site mutation c.6528deIT, which is present in revertant keratinocytes, resulted in correction of the reading frame. As the new CCC codon codes for the same amino acid proline as the wild-type codon CCT, the revertant cells expressed wild-type type VII collagen polypeptide, leading to restoration of skin function. We hypothesize that, on careful examination, revertant mosaicism might be found to be more common in patients with type VII collagen-deficient EB. Furthermore, the revertant keratinocytes might offer the possibility to explore cell-based therapeutic strategies, by culturing in vitro and subsequently grafting as part of bioengineered dermo-epidermal substitutes on affected skin

    Particle Bombardment of Ex Vivo Skin to Deliver DNA and Express Proteins

    No full text
    Particle bombardment of gold microparticles coated with plasmids, which are accelerated to high velocity, is used for transfection of cells within tissue. Using this method, cDNA encoding proteins of interest introduced into ex vivo living human skin enables studying of proteins of interest in real time. Here, technical aspects of particle bombardment of ex vivo skin are described using green fluorescent protein (GFP) as readout for efficiency. This method can be applied on numerous tissues, including in living model animals
    corecore