4 research outputs found

    The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome

    Get PDF
    Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease

    Instability of a (CGG)98 repeat in the Fmr1 promoter

    Get PDF
    Fragile X syndrome is one of 14 trinucleotide repeat diseases. It arises due to expansion of a CGG repeat which is present in the 5'-untranslated region of the FMR1 gene, disruption of which leads to mental retardation. The mechanisms involved in trinucleotide repeat expansion are poorly understood and to date, transgenic mouse models containing transgenic expanded CGG repeats have failed to reproduce the instability seen in humans. As both cis-acting factors and the genomic context of the CGG repeat are thought to play a role in expansion, we have now generated a knock-in mouse Fmr1 gene in which the murine (CGG)8 repeat has been exchanged with a human (CGG)98 repeat. Unlike other CGG transgenic models, this model shows moderate CGG repeat instability upon both in maternal and paternal transmission. This model will now enable us to study the timing and the mechanism of repeat expansion in mice

    Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo.

    No full text
    FXR1 is one of the two known homologues of FMR1. FXR1 shares a high degree of sequence homology with FMR1 and also encodes two KH domains and an RGG domain, conferring RNA-binding capabilities. In comparison with FMRP, very little is known about the function of FXR1P in vivo. Mouse knockout (KO) models exist for both Fmr1 and Fxr2. To study the function of Fxr1 in vivo, we generated an Fxr1 KO mouse model. Homozygous Fxr1 KO neonates die shortly after birth most likely due to cardiac or respiratory failure. Histochemical analyses carried out on both skeletal and cardiac muscles show a disruption of cellular architecture and structure in E19 Fxr1 neonates compared with wild-type (WT) littermates. In WT E19 skeletal and cardiac muscles, Fxr1p is localized to the costameric regions within the muscles. In E19 Fxr1 KO littermates, in addition to the absence of Fxr1p, costameric proteins vinculin, dystrophin and alpha-actinin were found to be delocalized. A second mouse model (Fxr1 + neo), which expresses strongly reduced levels of Fxr1p relative to WT littermates, does not display the neonatal lethal phenotype seen in the Fxr1 KOs but does display a strongly reduced limb musculature and has a reduced life span of approximately 18 weeks. The results presented here point towards a role for Fxr1p in muscle mRNA transport/translation control similar to that seen for Fmrp in neuronal cells

    Knockout mouse model for Fxr2: a model for mental retardation

    Get PDF
    Fragile X syndrome is a common form of mental retardation caused by the absence of the FMR1 protein, FMRP. Fmr1 knockout mice exhibit a phenotype with some similarities to humans, such as macro-orchidism and behavioral abnormalities. Two homologs of FMRP have been identified, FXR1P and FXR2P. These proteins show high sequence similarity, including all functional domains identified in FMRP, such as RNA binding domains. They have an overlap in tissue distribution to that of FMRP. Interactions between the three FXR proteins have also been described. FXR2P shows high expression in brain and testis, like FMRP. To study the function of FXR2P, we generated an Fxr2 knockout mouse model. No pathological differences between knockout and wild-type mice were found in brain or testis. Given the behavioral phenotype in fragile X patients and the phenotype previously reported for the Fmr1 knockout mouse, we performed a thorough evaluation of the Fxr2 knockout phenotype using a behavioral test battery. Fxr2 knockout mice were hyperactive (i.e. traveled a greater distance, spent more time moving and moved faster) in the open-field test, impaired on the rotarod test, had reduced levels of prepulse inhibition, displayed less contextual conditioned fear, impaired at locating the hidden platform in the Morris water task and were less sensitive to a heat stimulus. Interestingly, there are some behavioral phenotypes in Fxr2 knockout mice which are similar to those observed in Fmr1 knockout mice, but there are also some different behavioral abnormalities that are only observed in the Fxr2 mutant mice. The findings implicate a role for Fxr2 in central nervous system function
    corecore