11,994 research outputs found
Layered Fixed Point Logic
We present a logic for the specification of static analysis problems that
goes beyond the logics traditionally used. Its most prominent feature is the
direct support for both inductive computations of behaviors as well as
co-inductive specifications of properties. Two main theoretical contributions
are a Moore Family result and a parametrized worst case time complexity result.
We show that the logic and the associated solver can be used for rapid
prototyping and illustrate a wide variety of applications within Static
Analysis, Constraint Satisfaction Problems and Model Checking. In all cases the
complexity result specializes to the worst case time complexity of the
classical methods
Discovering, quantifying, and displaying attacks
In the design of software and cyber-physical systems, security is often
perceived as a qualitative need, but can only be attained quantitatively.
Especially when distributed components are involved, it is hard to predict and
confront all possible attacks. A main challenge in the development of complex
systems is therefore to discover attacks, quantify them to comprehend their
likelihood, and communicate them to non-experts for facilitating the decision
process. To address this three-sided challenge we propose a protection analysis
over the Quality Calculus that (i) computes all the sets of data required by an
attacker to reach a given location in a system, (ii) determines the cheapest
set of such attacks for a given notion of cost, and (iii) derives an attack
tree that displays the attacks graphically. The protection analysis is first
developed in a qualitative setting, and then extended to quantitative settings
following an approach applicable to a great many contexts. The quantitative
formulation is implemented as an optimisation problem encoded into
Satisfiability Modulo Theories, allowing us to deal with complex cost
structures. The usefulness of the framework is demonstrated on a national-scale
authentication system, studied through a Java implementation of the framework.Comment: LMCS SPECIAL ISSUE FORTE 201
Control Flow Analysis for BioAmbients
This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We eventually apply our analysis to an example of gene regulation by positive feedback taken from the literature
Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study
Cyber-physical systems integrate information and communication technology
functions to the physical elements of a system for monitoring and controlling
purposes. The conversion of traditional power grid into a smart grid, a
fundamental example of a cyber-physical system, raises a number of issues that
require novel methods and applications. In this context, an important issue is
the verification of certain quantitative properties of the system. In this
technical report, we consider a specific Chinese Smart Grid implementation and
try to address the verification problem for certain quantitative properties
including performance and battery consumption. We employ stochastic model
checking approach and present our modelling and analysis study using PRISM
model checker
- …
