2,356 research outputs found
Memory Modulation in the Classroom: Selective Enhancement of College Examination Performance by Arousal Induced after Lecture
Laboratory studies examining moderate physiological or emotional arousal induced after learning indicate that it enhances memory consolidation. Yet, no studies have yet examined this effect in an applied context. As such, arousal was induced after a college lecture and its selective effects were examined on later exam performance. Participants were divided into two groups who either watched a neutral video clip (n = 66) or an arousing video clip (n = 70) after lecture in a psychology course. The final examination occurred two weeks after the experimental manipulation. Only performance on the group of final exam items that covered material from the manipulated lecture were significantly different between groups. Other metrics, such as the midterm examination and the total final examination score, did not differ between groups. The results indicate that post-lecture arousal selectively increased the later retrieval of lecture material, despite the availability of the material for study before and after the manipulation. The results reinforce the role of post-learning arousal on memory consolidation processes, expanding the literature to include a real-world learning context
Muscle Tension Induced after Learning Enhances Long-Term Narrative and Visual Memory in Healthy Older Adults
Arousing events are better remembered than mundane events. Indeed, manipulation of arousal, such as by muscle tension, can influence memory even when it occurs shortly after learning. Indeed, our founding study showed this approach can raise delayed memory performance in older adults to a level comparable to that of unaided young adults. Yet, systematic studies, especially those investigating different modalities or types of memory, have not been done. This study investigated the effects of a brief bout of isometric exercise via handgrip on narrative and visuospatial episodic memory in healthy elders. Forty-seven participants completed the Logical Memory subtest of the Wechsler Memory Scales III (LM) and the Benton Visual Retention Test (BVRT), followed alternately by no treatment and by moderately squeezing a sand-filled latex ball for 1-min (counterbalanced order and test forms). Isometric exercise significantly increased both positive and negative affect ratings. Retention was tested 2 weeks later. Delayed recall and recognition of LM was enhanced by arousal relative to control, as was recognition of the BVRT. The results extend past findings that muscle tension induced after learning modulates memory consolidation, extending findings in elders to suggest that a simple form of isometric exercise can have practical effects, such as aiding memory for stories and images
Quantum Faraday Effect in Double-Dot Aharonov-Bohm Ring
We investigate Faraday's law of induction manifested in the quantum state of
Aharonov-Bohm loops. In particular, we propose a flux-switching experiment for
a double-dot AB ring to verify the phase shift induced by Faraday's law. We
show that the induced {\em Faraday phase} is geometric and nontopological. Our
study demonstrates that the relation between the local phases of a ring at
different fluxes is not arbitrary but is instead determined by Faraday's
inductive law, which is in strong contrast to the arbitrary local phase of an
Aharonov-Bohm ring for a given flux.Comment: Submitted to Phys. Rev. Let
Entangling photons using a charged quantum dot in a microcavity
We present two novel schemes to generate photon polarization entanglement via
single electron spins confined in charged quantum dots inside microcavities.
One scheme is via entangled remote electron spins followed by
negatively-charged exciton emissions, and another scheme is via a single
electron spin followed by the spin state measurement. Both schemes are based on
giant circular birefringence and giant Faraday rotation induced by a single
electron spin in a microcavity. Our schemes are deterministic and can generate
an arbitrary amount of multi-photon entanglement. Following similar procedures,
a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure
Entangling characterization of (SWAP)1/m and Controlled unitary gates
We study the entangling power and perfect entangler nature of (SWAP)1/m, for
m>=1, and controlled unitary (CU) gates. It is shown that (SWAP)1/2 is the only
perfect entangler in the family. On the other hand, a subset of CU which is
locally equivalent to CNOT is identified. It is shown that the subset, which is
a perfect entangler, must necessarily possess the maximum entangling power.Comment: 12 pages, 1 figure, One more paragraph added in Introductio
Schmidt Analysis of Pure-State Entanglement
We examine the application of Schmidt-mode analysis to pure state
entanglement. Several examples permitting exact analytic calculation of Schmidt
eigenvalues and eigenfunctions are included, as well as evaluation of the
associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria
Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment
Cortical atrophy is a biomarker of Alzheimer’s disease (AD) that correlates with clinical symptoms. This study examined changes in cortical thickness from before to after an exercise intervention in mild cognitive impairment (MCI) and healthy elders. Thirty physically inactive older adults (14 MCI, 16 healthy controls) underwent MRI before and after participating in a 12-week moderate intensity walking intervention. Participants were between the ages of 61 and 88. Change in cardiorespiratory fitness was assessed using residualized scores of the peak rate of oxygen consumption (V̇O2peak) from pre- to post-intervention. Structural magnetic resonance images were processed using FreeSurfer v5.1.0. V̇O2peak increased an average of 8.49%, which was comparable between MCI and healthy elders. Overall, cortical thickness was stable except for a significant decrease in the right fusiform gyrus in both groups. However, improvement in cardiorespiratory fitness due to the intervention (V̇O2peak) was positively correlated with cortical thickness change in the bilateral insula, precentral gyri, precuneus, posterior cingulate, and inferior and superior frontal cortices. Moreover, MCI participants exhibited stronger positive correlations compared to healthy elders in the left insula and superior temporal gyrus. A 12-week moderate intensity walking intervention led to significantly improved fitness in both MCI and healthy elders. Improved V̇O2peak was associated with widespread increased cortical thickness, which was similar between MCI and healthy elders. Thus, regular exercise may be an especially beneficial intervention to counteract cortical atrophy in all risk groups, and may provide protection against future cognitive decline in both healthy elders and MCI
Exercise Training and Functional Connectivity Changes in Mild Cognitive Empairment and Healthy Elders
Background: Effective interventions are needed to improve brain function in mild cognitive impairment (MCI), an early stage of Alzheimer’s disease (AD). The posterior cingulate cortex (PCC)/precuneus is a hub of the default mode network (DMN) and is preferentially vulnerable to disruption of functional connectivity in MCI and AD. Objective: We investigated whether 12 weeks of aerobic exercise could enhance functional connectivity of the PCC/precuneus in MCI and healthy elders. Methods: Sixteen MCI and 16 healthy elders (age range = 60–88) engaged in a supervised 12-week walking exercise intervention. Functional MRI was acquired at rest; the PCC/precuneus was used as a seed for correlated brain activity maps. Results: A linear mixed effects model revealed a significant interaction in the right parietal lobe: the MCI group showed increased connectivity while the healthy elders showed decreased connectivity. In addition, both groups showed increased connectivity with the left postcentral gyrus. Comparing pre to post intervention changes within each group, the MCI group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and insular lobes, and the cerebellum. Healthy elders did not demonstrate any significant connectivity changes. Conclusion: The observed results show increased functional connectivity of the PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise training. The protective effects of exercise training on cognition may be realized through the enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. Whether these effects of exercise training may delay further cognitive decline in patients diagnosed with MCI remains to be demonstrated
An exploratory aerodynamic and structural investigation of all-flexible parawings
Aerodynamic and structural aspects of all-flexible parawing
- …