1,351 research outputs found

    Black holes without boundaries

    Full text link
    We discuss some of the drawbacks of using event horizons to define black holes and suggest ways in which black holes can be described without event horizons, using trapping horizons. We show that these trapping horizons give rise to thermodynamic behavior and possibly Hawking radiation too. This raises the issue of whether the event horizon or the trapping horizon should be seen as the true boundary of a black hole. This difference is important if we believe that quantum gravity will resolve the central singularity of the black hole and clarifies several of the issues associated with black hole thermodynamics and information loss.Comment: 8 pages. Invited essay for special edition of the International Journal of Modern Physics

    Spherically symmetric trapping horizons, the Misner-Sharp mass and black hole evaporation

    Full text link
    Understood in terms of pure states evolving into mixed states, the possibility of information loss in black holes is closely related to the global causal structure of spacetime, as is the existence of event horizons. However, black holes need not be defined by event horizons, and in fact we argue that in order to have a fully unitary evolution for black holes, they should be defined in terms of something else, such as a trapping horizon. The Misner-Sharp mass in spherical symmetry shows very simply how trapping horizons can give rise to black hole thermodynamics, Hawking radiation and singularities. We show how the Misner-Sharp mass can also be used to give insights into the process of collapse and evaporation of locally defined black holes.Comment: 9 pages, 10 figure

    An All Optical Fibre Quantum Controlled-NOT Gate

    Full text link
    We report the first experimental demonstration of an optical controlled-NOT gate constructed entirely in fibre. We operate the gate using two heralded optical fibre single photon sources and find an average logical fidelity of 90% and an average process fidelity of 0.83<F<0.91. On the basis of a simple model we are able to conclude that imperfections are primarily due to the photon sources, meaning that the gate itself works with very high fidelity.Comment: 4 pages, 4 figures, comments welcom

    Radiation from the LTB black hole

    Full text link
    Does a dynamical black hole embedded in a cosmological FRW background emit Hawking radiation where a globally defined event horizon does not exist? What are the differences to the Schwarzschild black hole? What about the first law of black hole mechanics? We face these questions using the LTB cosmological black hole model recently published. Using the Hamilton-Jacobi and radial null geodesic-methods suitable for dynamical cases, we show that it is the apparent horizon which contributes to the Hawking radiation and not the event horizon. The Hawking temperature is calculated using the two different methods giving the same result. The first law of LTB black hole dynamics and the thermal character of the radiation is also dealt with.Comment: 9 pages, revised version, Europhysics Letter 2012 97 2900

    Possible polarisation and spin dependent aspects of quantum gravity

    Full text link
    We argue that quantum gravity theories that carry a Lie algebraic modification of the Poincare' and Heisenberg algebras inevitably provide inhomogeneities that may serve as seeds for cosmological structure formation. Furthermore, in this class of theories one must expect a strong polarisation and spin dependence of various quantum-gravity effects.Comment: Awarded an "honourable mention" in the 2007 Gravity Research Foundation Essay Competitio

    The horizon-entropy increase law for causal and quasi-local horizons and conformal field redefinitions

    Full text link
    We explicitly prove the horizon-entropy increase law for both causal and quasi-locally defined horizons in scalar-tensor and f(R)f(R) gravity theories. Contrary to causal event horizons, future outer trapping horizons are not conformally invariant and we provide a modification of trapping horizons to complete the proof, using the idea of generalised entropy. This modification means they are no longer foliated by marginally outer trapped surfaces but fixes the location of the horizon under a conformal transformation. We also discuss the behaviour of horizons in "veiled" general relativity and show, using this new definition, how to locate cosmological horizons in flat Minkowski space with varying units, which is physically identified with a spatially flat FLRW spacetime.Comment: 23 page

    Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    Full text link
    Surface sensitive synchrotron-X-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3L_3 Cs+^+ resonance, we provide, for the first time, spatial counterion distributions (Cs+^+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3_3O+^+ at the interface leads to proton-transfer back to the phosphate group by a high contact-potential, whereas high salt concentrations lower the contact-potential resulting in proton-release and increased surface charge-density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions

    Gauge Invariant Variational Approach with Fermions: the Schwinger Model

    Get PDF
    We extend the gauge invariant variational approach of Phys. Rev. D52 (1995) 3719, hep-th/9408081, to theories with fermions. As the simplest example we consider the massless Schwinger model in 1+1 dimensions. We show that in this solvable model the simple variational calculation gives exact results.Comment: 14 pages, 1 figur

    Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation

    Get PDF
    Engineering Saccharomyces cerevisiae for industrial-scale production of valuable chemicals involves extensive modulation of its metabolism. Here, we identified novel gene expression fine-tuning set-ups to enhance endogenous metabolic fluxes toward increasing levels of acetyl-CoA and malonyl-CoA. dCas9-based transcriptional regulation was combined together with a malonyl-CoA responsive intracellular biosensor to select for beneficial set-ups. The candidate genes for screening were predicted using a genome-scale metabolic model, and a gRNA library targeting a total of 168 selected genes was designed. After multiple rounds of fluorescence-activated cell sorting and library sequencing, the gRNAs that were functional and increased flux toward malonyl-CoA were assessed for their efficiency to enhance 3-hydroxypropionic acid (3-HP) production. 3-HP production was significantly improved upon fine-tuning genes involved in providing malonyl-CoA precursors, cofactor supply, as well as chromatin remodeling

    Production and decay of evolving horizons

    Full text link
    We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction, that of spherical symmetry, and two technical mathematical restrictions: (1) We choose to slice the spacetime in such a way that the space-time foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore we adopt Painleve-Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore we relate our results to Hawking's apparent horizon, Ashtekar et al's isolated and dynamical horizons, and Hayward's trapping horizons. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes, and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.Comment: 25 pages, uses iopart.cls V2: 5 references added; minor typos; V3: some additional clarifications, additional references, additional appendix on the Viadya spacetime. This version published in Classical and Quiantum Gravit
    • …
    corecore