3 research outputs found

    Ribonuclease-Activated Cancer Prodrug

    No full text
    Cancer chemotherapeutic agents often have a narrow therapeutic index that challenges the maintenance of a safe and effective dose. Consistent plasma concentrations of a drug can be obtained by using a timed-release prodrug strategy. We reasoned that a ribonucleoside 3′-phosphate could serve as a pro-moiety that also increases the hydrophilicity of a cancer chemotherapeutic agent. Herein, we report an efficient route for the synthesis of the prodrug uridine 3′-(4-hydroxytamoxifen phosphate) (UpHT). UpHT demonstrates timed-released activation kinetics with a half-life of approximately 4 h at the approximate plasma concentration of human pancreatic ribonuclease (RNase 1). MCF-7 breast cancer cells treated with UpHT showed decreased proliferation upon coincubation with RNase 1, consistent with the release of the active drug4-hydroxytamoxifen. These data demonstrate the utility of a human plasma enzyme as a useful activator of a prodrug

    Diazo Groups Endure Metabolism and Enable Chemoselectivity in Cellulo

    No full text
    We introduce a stabilized diazo group as a reporter for chemical biology. ManDiaz, which is a diazo derivative of <i>N</i>-acetylmannosamine, is found to endure cellular metabolism and label the surface of a mammalian cell. There its diazo group can undergo a 1,3-dipolar cycloaddition with a strained alkyne, providing a signal comparable to that from the azido congener, ManNAz. The chemoselectivity of diazo and alkynyl groups enables dual labeling of cells that is not possible with azido and alkynyl groups. Thus, the diazo group, which is approximately half the size of an azido group, provides unique opportunities for orthogonal labeling of cellular components

    Facile Chemical Functionalization of Proteins through Intein-Linked Yeast Display

    No full text
    Intein-mediated expressed protein ligation (EPL) permits the site-specific chemical customization of proteins. While traditional techniques have used purified, soluble proteins, we have extended these methods to release and modify intein fusion proteins expressed on the yeast surface, thereby eliminating the need for soluble protein expression and purification. To this end, we sought to simultaneously release yeast surface-displayed proteins and selectively conjugate with chemical functionalities compatible with EPL and click chemistry. Single-chain antibodies (scFv) and green fluorescent protein (GFP) were displayed on the yeast surface as fusions to the N-terminus of the Mxe GyrA intein. ScFv and GFP were released from the yeast surface with either a sulfur nucleophile (MESNA) or a nitrogen nucleophile (hydrazine) linked to an azido group. The hydrazine azide permitted the simultaneous release and azido functionalization of displayed proteins, but nonspecific reactions with other yeast proteins were detected, and cleavage efficiency was limited. In contrast, MESNA released significantly more protein from the yeast surface while also generating a unique thioester at the carboxy-terminus of the released protein. These protein thioesters were subsequently reacted with a cysteine alkyne in an EPL reaction and then employed in an azide<i>–</i>alkyne cycloaddition to immobilize the scFv and GFP on an azide-decorated surface with >90% site-specificity. Importantly, the immobilized proteins retained their activity. Since yeast surface display is also a protein engineering platform, these approaches provide a particularly powerful tool for the rapid assessment of engineered proteins
    corecore