211 research outputs found

    Perceptions and Experiences of Perinatal Mental Disorders in Rural, Predominantly Ethnic Minority Communities in Northern Vietnam

    Get PDF
    Background: Preliminary research has suggested that perinatal mental disorders (PMDs), including post-partum depression, are prevalent in Vietnam. However the extent to which these disorders are recognized at the community level remains largely undocumented in the literature. PMDs have also never been investigated within Vietnam’s significant ethnic minority populations, who are known to bear a greater burden of maternal and infant health challenges than the ethnic majority. Objective: To investigate knowledge and perceptions of PMDs and their treatments at the community level in a rural, predominantly ethnic minority region of northern Vietnam

    DCU Team at the NTCIR-16 RCIR Task

    Get PDF
    Reading is one of the most common everyday activities. People read through most of their daily context such as during study or for entertainment in their spare time. Despite playing a critical role in our lives, there has been limited research on how people read and how it affects their level of understanding. The NTCIR-16 RCIR challenge is the first collaborative evaluation that aims to automatically measure the reading comprehension of a reader and integrate it as part of the information retrieval process. In this paper, we present our approach for the NTCIR-16 RCIR challenge, in which task participants are required to predict reading comprehension using eye movement signals of the readers. We utilised several conventional machine learning techniques to estimate the level of comprehension and combined it with a language model to perform text retrieval. Our extensive experiments, covering both subject-dependent and subject-independent scenarios, showed that our approach with fine-tuning obtained a Spearman’s coefficient of 0.5993 for the comprehension-evaluation task and nDCG at 0.7296 for the comprehension-based retrieval task

    Enhancing insecticide activity of anacardic acid by intercalating it into MgAl layered double hydroxides nanoparticles: Research article

    Get PDF
    MgAl layered double hydroxides nanoparticles (LDHs) are known as the useful materials in agrochemsitry. LDHs can be used as a bio-insecticide carrier to enhance insecticide’s activity efficiency. In our study, to improve the insecticide activity of anacardic acid, an extract from cashew nut shell liquid, we intercalated it MgAl layered double hydroxides nanoparticles. Different hybridization between anacardic acid and LDHs (37, 74, 148, and 296μg/mL) (L-As) were made and tested on the survivals of cutworms (Spodoptera litura). L-As or free anacardic acid was sprayed directly on the leaves mustard to feed cutworms or directly on the skin of cutworms. Our results showed that in all L-As treatments, the worm killing efficiency was higher than the free anacardic acid treatment.Hạt nano lớp đôi hydroxides MgAl (LDHs) được biết đến như là những vật liệu hữu ích trong nông ngành hóa học nông nghiệp. LDHs có thể được dùng như là một loại chất mang cho thuốc trừ sâu sinh học để tăng cường hiệu lực diệt sâu. Trong nghiên cứu này, để tăng cường hiệu lực diệt sâu của anacardic acid, một loại hoạt chất được chiết từ dầu vỏ hạt điều, chúng tôi đã gắn chèn nó lên hạt nano lớp đôi hydroxides MgAl. Các nồng độ khác nhau của dạng lai của anacardic và LDHs (37, 74, 148 và 296μg/mL) (L-As) đã được kiểm tra tỷ lệ sống của ấu trùng sâu khoang (Spodoptera litura). Các nghiệm thức L-As và dạng anacardic acid tự do đã được phun lên lá rau cải ngọt cho ấu trùng sâu ăn hoặc phun trực tiếp lên da ấu trùng sâu. Kết quả cho thấy, tất cả các công thức có xử lý bằng L-As, hiệu lực diệt ấu trùng sâu đều cao hơn so với dạng anacardic acid ở trạng thái tự do

    A VR interface for browsing visual spaces at VBS2021

    Get PDF
    The Video Browser Showdown (VBS) is an annual competition in which each participant prepares an interactive video retrieval system and partakes in a live comparative evaluation at the annual MMMConference. In this paper, we introduce Eolas, which is a prototype video/image retrieval system incorporating a novel virtual reality (VR)interface. For VBS’21, Eolas represented each keyframe of the collection by an embedded feature in a latent vector space, into which a query would also be projected to facilitate retrieval within a VR environment. A user could then explore the space and perform one of a number of filter operations to traverse the space and locate the correct result

    Mapping for engagement: setting up a community based participatory research project to reach underserved communities at risk for Hepatitis C in Ho Chi Minh City, Vietnam

    Get PDF
    Background: Approximately 1. 07 million people in Vietnam are infected with hepatitis C virus (HCV). To address this epidemic, the South East Asian Research Collaborative in Hepatitis (SEARCH) launched a 600-patient cohort study and two clinical trials, both investigating shortened treatment strategies for chronic HCV infection with direct-acting antiviral drugs. We conducted ethnographic research with a subset of trial participants and found that the majority were aware of HCV infection and its implications and were motivated to seek treatment. However, people who inject drugs (PWID), and other groups at risk for HCV were under-represented, although injecting drug use is associated with high rates of HCV. Material and Methods: We designed a community-based participatory research (CBPR) study to engage in dialogues surrounding HCV and other community-prioritized health issues with underserved groups at risk for HCV in Ho Chi Minh City. The project consists of three phases: situation analysis, CBPR implementation, and dissemination. In this paper, we describe the results of the first phase (i.e., the situation analysis) in which we conducted desk research and organized stakeholder mapping meetings with representatives from local non-government and community-based organizations where we used participatory research methods to identify and analyze key stakeholders working with underserved populations. Results: Twenty six institutions or groups working with the key underserved populations were identified. Insights about the challenges and dynamics of underserved communities were also gathered. Two working groups made up of representatives from the NGO and CBO level were formed. Discussion: Using the information provided by local key stakeholders to shape the project has helped us to build solid relationships, give the groups a sense of ownership from the early stages, and made the project more context specific. These steps are not only important preliminary steps for participatory studies but also for other research that takes place within the communities

    Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii

    Get PDF
    Multidrug efflux pumps provide clinically significant levels of drug resistance in a number of Gram-negative hospital-acquired pathogens. These pathogens frequently carry dozens of genes encoding putative multidrug efflux pumps. However, it can be difficult to determine how many of these pumps actually mediate antimicrobial efflux, and it can be even more challenging to identify the regulatory proteins that control expression of these pumps. In this study, we developed an innovative high-throughput screening method, combining transposon insertion sequencing and cell sorting methods (TraDISort), to identify the genes encoding major multidrug efflux pumps, regulators, and other factors that may affect the permeation of antimicrobials, using the nosocomial pathogen Acinetobacter baumannii. A dense library of more than 100,000 unique transposon insertion mutants was treated with ethidium bromide, a common substrate of multidrug efflux pumps that is differentially fluorescent inside and outside the bacterial cytoplasm. Populations of cells displaying aberrant accumulations of ethidium were physically enriched using fluorescence-activated cell sorting, and the genomic locations of transposon insertions within these strains were determined using transposon-directed insertion sequencing. The relative abundance of mutants in the input pool compared to the selected mutant pools indicated that the AdeABC, AdeIJK, and AmvA efflux pumps are the major ethidium efflux systems in A. baumannii. Furthermore, the method identified a new transcriptional regulator that controls expression of amvA. In addition to the identification of efflux pumps and their regulators, TraDISort identified genes that are likely to control cell division, cell morphology, or aggregation in A. baumannii. IMPORTANCE Transposon-directed insertion sequencing (TraDIS) and related technologies have emerged as powerful methods to identify genes required for bacterial survival or competitive fitness under various selective conditions. We applied fluorescence-activated cell sorting (FACS) to physically enrich for phenotypes of interest within a mutant population prior to TraDIS. To our knowledge, this is the first time that a physical selection method has been applied in parallel with TraDIS rather than a fitness-induced selection. The results demonstrate the feasibility of this combined approach to generate significant results and highlight the major multidrug efflux pumps encoded in an important pathogen. This FACS-based approach, TraDISort, could have a range of future applications, including the characterization of efflux pump inhibitors, the identification of regulatory factors controlling gene or protein expression using fluorescent reporters, and the identification of genes involved in cell replication, morphology, and aggregation

    Altering, Improving, And Defining The Specificities Of Crispr-Cas Nucleases

    Get PDF
    CRISPR-Cas9 nucleases have been widely adopted for genome editing applications to knockout genes or to introduce desired changes. While these nucleases have shown immense promise, two notable limitations of the wild-type form of the broadly used Streptococcus pyogenes Cas9 (SpCas9) are the restriction of targeting range to sites that contain an NGG protospacer adjacent motif (PAM), and the undesirable ability of the enzyme to cleave off-target sites that resemble the on-target site. Scarcity of PAM motifs can limit implementations that require precise targeting, whereas off-target effects can confound research applications and are important considerations for therapeutics. To improve the targeting range of SpCas9 and an orthogonal Cas9 from Staphylococcus aureus (called SaCas9), we optimized a heterologous genetic selection system that enabled us to perform directed evolution of PAM specificity. With SpCas9, we evolved two separate variants that can target NGA and NGCG PAMs1, and with SaCas9 relaxed the PAM from NNGRRT to NNNRRT2, increasing the targetability of these enzyme 2- to 4-fold. The genome-wide specificity profiles of SpCas9 and SaCas9 variants, determine by GUIDE-seq3, indicate that they are at least as, if not more, specific than the wild-type enzyme1,2. Together, these results demonstrate that the inherent PAM specificity of multiple different Cas9 orthologues can be purposefully modified to improve the accuracy of targeting. Existing strategies for improving the genome-wide specificity of SpCas9 have thus far proven to be incompletely effective and/or have other limitations that constrain their use. To address the off-target potential of SpCas9, we engineered a high-fidelity variant of SpCas9 (called SpCas9-HF1), that contains alterations designed to reduce non-specific contacts to the target strand DNA backbone. In comparison to wild-type SpCas9, SpCas9-HF1 rendered all or nearly all off-target events imperceptible by GUIDE-seq and targeted deep-sequencing methods with standard non-repetitive target sites in human cells4. Even for atypical, repetitive target sites, the vast majority of off-targets induced by SpCas9-HF1 and optimized derivatives were not detected4. With its exceptional precision, SpCas9-HF1 provides an important and easily employed alternative to wild-type SpCas9 that can eliminate off-target effects when using CRISPR-Cas9 for research and therapeutic applications. Finally, on-target activity and genome-wide specificity are two important properties of engineered nucleases that should be characterized prior to adoption of such technologies for research or therapeutic applications. CRISPR-Cas Cpf1 nucleases have recently been described as an alternative genome-editing platform5, yet their activities and genome-wide specificities remain largely undefined. Based on assessment of on-target activity across more than 40 target sites, we demonstrate that two Cpf1 orthologues function robustly in human cells with efficiencies comparable to those of the widely used Streptococcus pyogenes Cas9. We also demonstrate that four to six bases at the 3’ end of the short CRISPR RNA (crRNA) used to program Cpf1 are insensitive to single base mismatches, but that many of the other bases within the crRNA targeting region are highly sensitive to single or double substitutions6. Consistent with these results, GUIDE-seq performed in multiple cell types and targeted deep sequencing analyses of two Cpf1 nucleases revealed no detectable off-target cleavage for over half of 20 different crRNAs we examined. Our results suggest that the two Cpf1 nucleases we characterized generally possess robust on-target activity and high specificities in human cells, findings that should encourage broader use of these genome editing enzymes. 1. Kleinstiver, BP, et al. (2015) Nature, 523(7561):481-5 2. Kleinstiver, BP, et al. (2015) Nature Biotechnology, 33(12):1293-98 3. Tsai, SQ et al. (2015) Nature Biotechnology, 33(2):187-97 4. Kleinstiver, BP and Pattanayak, V, et al. (2016), Nature, 529(7587):490-5 5. Zetsche, B, et al. (2015) Cell, 163(3):759-71 6. Kleinstiver, BP and Tsai, SQ, et al. (2016), Nature Biotechnology, 34(8):869-7
    corecore