24 research outputs found
Multi-classifier system for robust pattern recognition
Despite the success of many pattern recognition problems in a constrained domain, the task of pattern recognition is "ill-defined" and difficult due to the noise and large variations in input data. A promising approach is to use several classifiers simultaneously, such that they can complement each other in correctness. This thesis tackles the recognition problem in two aspects: (1) propose a new classifier called Contender Network (CN) and (2) propose a combining classifier called Combined Classifier (CC) which aggregates the outputs of a number of pattern classifiers using a new evidence combination method. So the primary objective of this work is to propose an effective framework of multiple classifier system that takes advantage of the strength of the individual classifier. This framework is then applied to the task of recognition of hand-written numeric digits.Doctor of Philosophy (SCE
Bank failure prediction using an accurate and interpretable neural fuzzy inference system
Bank failure prediction is an important study for regulators in the banking industry because the failure of a bank leads to devastating consequences. If bank failures are correctly predicted, early warnings can be sent to the responsible authorities for precaution purposes. Therefore, a reliable bank failure prediction or early warning system is invaluable to avoid adverse repercussion effects on other banks and to prevent drastic confidence losses in the society. In this paper, we propose a novel self-organizing neural fuzzy inference system, which functions as an early warning system of bank failures. The system performs accurately based on the auto-generated fuzzy inference rule base. More importantly, the simplified rule base possesses a high level of interpretability, which makes it much easier for human users to comprehend. Three sets of experiments are conducted on a publicly available database, which consists of 3635 United States banks observed over a 21-year period. The experimental results of our proposed model are encouraging in terms of both accuracy and interpretability when benchmarked against other prediction models.Accepted versio
Ovarian cancer diagnosis using a hybrid intelligent system with simple yet convincing rules
Ovarian cancer is the ninth most common cancer among women and ranks fifth in cancer deaths. Statistics show that the five-year survival rate is greater than 75% if diagnosis occurs before the cancer cells have spread to other organs (stage I), but it drops to 20% when the cancer cells have spread to upper abdomen (stage III). Therefore, it is crucial to detect ovarian cancer as early as possible and to correctly identify the stage of the cancer to prevent any further delay of appropriate treatments. In this paper, we propose a novel self-organizing neural fuzzy inference system that functions as a reliable decision support system for ovarian cancer diagnoses. The system only requires a limited number of control parameters and constraints to derive simple yet convincing inference rules without human intervention and expert guidance. Because feature selection and attribute reduction are performed during training, the inference rules possess a great level of interpretability. Experiments are conducted on both established medical data sets and real-world cases collected from hospital. The experimental results of our proposed model in ovarian cancer diagnoses are encouraging because it achieves the most number of correct diagnoses when benchmarked against other computational intelligence based models. More importantly, its
automatically derived rules are consistent with expert knowledge.Accepted versio
Entropy learning and relevance criteria for neural network pruning
In this paper, entropy is a term used in the learning phase of a neural network. As learning progresses, more hidden nodes get into saturation. The early creation of such hidden nodes may impair generalisation. Hence an entropy approach is proposed to dampen the early creation of such nodes by using a new computation called entropy cycle. Entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes. At the end of learning, the less important nodes can then be pruned to reduce the memory requirements of the neural network
Entropy Learning in Neural Network
In this paper, entropy term is used in the learning phase of a neural network. As learning progresses, more hidden nodes get into saturation. The early creation of such hidden nodes may impair generalisation. Hence entropy approach is proposed to dampen the early creation of such nodes. The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes. At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network
Hidden node activation differential - a new neural network relevancy criteria
International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES1274-2810026