27,345 research outputs found

    Probing the Galaxy I. The galactic structure towards the galactic pole

    Full text link
    Observations of (B-V) colour distributions towards the galactic poles are compared with those obtained from synthetic colour-magnitude diagrams to determine the major constituents in the disc and spheroid. The disc is described with four stellar sub-populations: the young, intermediate, old, and thick disc populations, which have respectively scale heights of 100 pc, 250 pc, 0.5 kpc, and 1.0 kpc. The spheroid is described with stellar contributions from the bulge and halo. The bulge is not well constrained with the data analyzed in this study. A non-flattened power-law describes the observed distributions at fainter magnitudes better than a deprojected R^{1/4}-law. Details about the age, metallicity, and normalizations are listed in Table 1. The star counts and the colour distributions from the stars in the intermediate fields towards the galactic anti-centre are well described with the stellar populations mentioned above. Arguments are given that the actual solar offset is about 15 pc north from the galactic plane.Comment: 11 pages TeX, 4 separate pages with additional figures, accepted for publication in A&

    The Ratio of Total to Selective Extinction Toward Baade's Window

    Get PDF
    We measure the ratio of total to selective extinction, R_{VI}=A_V/E(V-I), toward Baade's Window by comparing the VIK colors of 132 Baade's Window G and K giants from Tiede, Frogel, & Terndrup with the solar-neighborhood (V-I),(V-K) relation from Bessell & Brett. We find R_{VI}=2.283 +/- 0.016, and show that our measurement has no significant dependence on stellar type from G0 to K4. Adjusting the Paczynski et al. determination of the centroid of the dereddened Baade's Window clump for this revised value of RVIR_{VI}, we find I_{0,RC}=14.43 and (V-I)_{0,RC}=1.058. This implies a distance to the Baade's Window clump of d_{BW} = 8.63 +/- 0.16 kpc, where the error bar takes account of statistical but not systematic uncertainties.Comment: 8 pages, 1 figure, submitted to Ap

    Decoherence of Einstein-Podolsky-Rosen steering

    Full text link
    We consider two systems A and B that share Einstein-Podolsky-Rosen (EPR) steering correlations and study how these correlations will decay, when each of the systems are independently coupled to a reservoir. EPR steering is a directional form of entanglement, and the measure of steering can change depending on whether the system A is steered by B, or vice versa. First, we examine the decay of the steering correlations of the two-mode squeezed state. We find that if the system B is coupled to a reservoir, then the decoherence of the steering of A by B is particularly marked, to the extent that there is a sudden death of steering after a finite time. We find a different directional effect, if the reservoirs are thermally excited. Second, we study the decoherence of the steering of a Schr\"odinger cat state, modeled as the entangled state of a spin and harmonic oscillator, when the macroscopic system (the cat) is coupled to a reservoir

    Effect of Spin-Orbit Interaction in Spin-Triplet Superconductor: Structure of d{\bf d}-vector and Anomalous 17^{17}O-NQR Relaxation in Sr2_2RuO4_4

    Full text link
    Supposing the spin-triplet superconducting state of Sr2_2RuO4_4, the spin-orbit (SO) coupling associated with relative motion in Cooper pairs is calculated by extending the method for the dipole-dipole coupling given by Leggett in the superfluid 3^{3}He. It is shown that the SO coupling works only in the equal-spin pairing (ESP) state to make the pair angular momentum L\hbar{\vec L} and the pair spin angular momentum id×d{\rm i}{\vec d}\times{\vec d}^{*} parallel with each other. The SO coupling gives rise to the internal Josephson effect in a chiral ESP state as in superfluid A-phase of 3^3He with a help of an additional anisotropy arising from SO coupling of atomic origin which works to direct the {\bf d}-vector into abab-plane. This resolves the problem of the anomalous relaxation of 17^{17}O-NQR and the structure of {\bf d}-vector in Sr2_2RuO4_4.Comment: Accepted for publication in J. Phys. Soc. Jpn. vol.79 (2010), No.2 (February issue); 18 pages, 2 figure

    Frustrated multiband superconductivity

    Full text link
    We show that a clean multiband superconductor may display one or several phase transitions with increasing temperature from or to frustrated configurations of the relative phases of the superconducting order parameters. These transitions may occur when more than two bands are involved in the formation of the superconducting phase and when the number of repulsive interband interactions is odd. These transitions are signalled by slope changes in the temperature dependence of the superconducting gaps.Comment: 5 pages, 3 figure

    High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213

    Get PDF
    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap

    Clump Distance to the Magellanic Clouds and Anomalous Colors in the Galactic Bulge

    Full text link
    I demonstrate that the two unexpected results in the local Universe: 1) anomalous intrinsic (V-I)_0 colors of the clump giants and RR Lyrae stars in the Galactic center, and 2) very short distances to the Magellanic Clouds (LMC, SMC) as inferred from clump giants, are connected with each other. The (V-I)_0 anomaly is partially resolved by using the photometry from the phase-II of the Optical Gravitational Lensing Experiment (OGLE) rather than phase-I. The need for V- or I-magnitude-based change in the bulge (V-I)_0 is one option to explain the remaining color discrepancy. Such change may originate in a coefficient of selective extinction A_V/E(V-I) smaller than typically assumed. Application of the (V-I)_0 correction (independent of its source) doubles the slope of the absolute magnitude - metallicity relation for clump giants, so that M_I(RC) = -0.23 + 0.19[Fe/H]. Consequently, the estimates of the clump distances to the LMC and SMC are affected. Udalski's (1998c) distance modulus of mu_{LMC} = 18.18 +/- 0.06 increases to mu_{LMC} = 18.27 +/- 0.07. The distance modulus to the SMC increases by 0.12 to mu_{SMC} = 18.77 +/- 0.08. I argue that a more comprehensive assessment of the metallicity effect on M_I(RC) is needed.Comment: accepted by ApJ Letters, brief review of the short distance scale dropped, discussion of the absolute magnitude - metallicity relation for clump giants shortened and made more qualitative, results basically unchange

    Electronic theory for the normal state spin dynamics in Sr2_2RuO4_4: anisotropy due to spin-orbit coupling

    Full text link
    Using a three-band Hubbard Hamiltonian we calculate within the random-phase-approximation the spin susceptibility, χ(q,ω)\chi({\bf q},\omega), and NMR spin-lattice relaxation rate, 1/T1_1, in the normal state of the triplet superconductor Sr2_2RuO4_4 and obtain quantitative agreement with experimental data. Most importantly, we find that due to spin-orbit coupling the out-of-plane component of the spin susceptibility χzz\chi^{zz} becomes at low temperatures two times larger than the in-plane one. As a consequence strong incommensurate antiferromagnetic fluctuations of the quasi-one-dimensional xzxz- and yzyz-bands point into the zz-direction. Our results provide further evidence for the importance of spin fluctuations for triplet superconductivity in Sr2_2RuO4_4.Comment: revised versio
    corecore