32 research outputs found

    Fizikokemijska karakterizacija čvrstih disperzijskih sustava tadalafila s poloksamerom 407

    Get PDF
    Dissolution behaviour of a poorly water-soluble drug, tadalafil, from its solid dispersion systems with poloxamer 407 has been investigated. Solid dispersion systems of tadalafil were prepared with poloxamer 407 in 1:0.5, 1:1.5 and 1:2.5 ratios using the melting method. Characterization of binary systems with FTIR and powder XRPD studies demonstrated the presence of strong hydrogen bonding interactions, a significant decrease in crystallinity and the possibility of existence of amorphous entities of the drug. In the binary systems tested, 1:0.5 proportion of tadalafil/poloxamer 407 showed rapid dissolution of tadalafil (DE30 70.9 ± 3.6 %). In contrast, higher proportions of poloxamer 407 (1:1.5 and 1:2.5) offered no advantage towards dissolution enhancement of the drug from corresponding binary systems indicating altered rheological characteristics of the polymer, at its higher concentration, which might have retarded the release rate of tadalafil.U radu je ispitivano oslobađanje u vodi teško topljivog lijeka tadalafila iz čvrstih disperzijskih sustava. Ti sustavi pripravljeni su s poloksamerom 407 u omjeru lijeka i polimera 1:0,5, 1:1,5 i 1:2,5, koristeći metodu taljenja. Karakterizacija binarnih sustava s FTIR i rendgenskom difrakcijom praha XRD ukazuje na prisutnost snažnih vodikovih veza, značajno smanjenje kristaliničnosti i moguću prisutnost amorfnog lijeka. Iz binarnog sustava tadalafil/poloksamer 1:0,5 oslobađanje ljekovite tvari je brzo (DE30 70,9 ± 3,6 %). Nasuprot tome, iz pripravaka s višim omjerima lijeka i polimera (1:1,5 i 1:2,5) oslobađanje ljekovite tvari nije povećano. Usporavanje oslobađanja tadalafila moglo bi biti posljedicom promjene reoloških svojstava polimera pri višim koncentracijama

    The state of contemporary library development in Tanzania in the context of NATIS

    No full text
    166-17

    Expression, Characterization, and Evaluation of a RANK-binding Single Chain Fraction Variable: An Osteoclast Targeting Drug Delivery Strategy

    No full text
    A single chain Fraction variable (scFv) employs antibody-like target recognition specificity. Osteoclasts, responsible for bone resorption, express Receptor Activator of Nuclear factor Kappa B (RANK) receptors. This study aimed to express, characterize, and evaluate scFv against RANK receptors that may serve as a platform to target osteoclasts. Using phage display technology, scFv against RANK receptor was expressed and characterized by DNA sequencing, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption–ionization time-of-flight (MALDI TOF), enzyme-linked immunosorbent assay (ELISA), Western blot, and immunocytochemistry. The potential for cytotoxicity was evaluated using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, and its cross reactivity was evaluated using ELISA. Osteoclast-like cells were generated from RAW 264.7 cells, and the osteoclast targeting ability of scFv was evaluated using immunocytochemistry. ScFv’s antiresorptive efficacy was studied using a tartrate-resistant acid phosphatase (TRAP) assay and resorption assay. Anti-RANK scFv was successfully expressed and characterized. No cross reactivity with other tumor necrosis factor receptor (TNFR) members and no cytotoxic effect on a non-RANK bearing cell line were observed. It showed specificity toward a RANK receptor and an inhibitory effect on osteoclast activity. With the increase in development trends for biologics as therapeutics and growing knowledge on the importance of osteoclast targeted therapy, this study may provide a drug delivery strategy to target osteoclasts, thereby leading to a promising therapy for resorptive bone diseases
    corecore