106 research outputs found

    Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin

    Get PDF
    The encapsulation of caesium (Cs) and strontium (Sr) contaminated clinoptilolite in Na and K based metakaolin geopolymers is reported. When Cs or Sr loaded clinoptilolite is mixed with a metakaolin geopolymer paste, the high pH of the activating solution and the high concentration of ions in solution cause ion exchange reactions and dissolution of clinoptilolite with release of Cs and Sr into the geopolymer matrix. The leaching of Cs and Sr from metakaolin-based geopolymer has therefore been investigated. It was found that Na-based geopolymers reduce leaching of Cs compared to K-based geopolymers and the results are in agreement with the hard and soft acids and bases (HSAB) theory. Cs ions are weak Lewis acids and aluminates are a weak Lewis base. During the formation of the geopolymer matrix Cs ions are preferentially bound to aluminate phases and replace Na in the geopolymer structure. Sr uptake by Na-geopolymers is limited to 0.4 mol Sr per mole of Al and any additional Sr is immobilised by the high pH which causes precipitation of Sr as low solubility hydroxide and carbonate phases. There was no evidence of any other phases being formed when Sr or Cs are added to metakaolin geopolymers

    The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries

    Get PDF
    The compression of carbon felt electrodes for redox flow batteries leads to changes in the electrochemical performance and has a large effect on the pressure drop of electrolyte flow through the system. In this investigation, the authors have characterised the electrochemical performance of all-vanadium redox flow batteries by studying the effect of compression on the contact resistance, polarisation behaviour and efficiency. Contact resistance was seen to reduce from ca. 2.0 Ω cm2 to 1.2 Ω cm2 and an energy efficiency of 85% was obtained from a felt compressed to 75%. Moreover, X-ray computed tomography (CT) has been employed to study the microstructure of felt electrodes at compressions up to 70%, showing a linear decrease in porosity and a constant fibre surface area-to-volume ratio. The pressure drop was modelled using computational fluid dynamics and employing the 3D structure of the felts obtained from CT, revealing that a 60% increase in compression related to a 44.5% increase in pressure drop

    Effect of reactant gas flow orientation on the current and temperature distribution in self-heating polymer electrolyte fuel cells

    Get PDF
    Fuel cell polarisation performance is typically reported under controlled/constant temperature conditions, as a sign of robust metrology. However, in practice, fuel cells self-heat as they generate current; which varies the temperature across the polarisation curve and affects performance. More detail regarding the internal cell operation can be gleaned by current and temperature distribution mapping. For the case of an unheated cell, ‘self-heating’ increases the cell temperature and improves performance, resulting in a ‘voltage recovery’ and a more homogeneous current and water distribution. For actively heated cells, a reduced current is observed in regions of high temperature and low humidity. The positioning of the gas manifolds also has a decisive impact on performance by affecting the reactant concentration, humidity and water distribution. Counter- and cross-flow orientations in a self-heating cell were studied, with a counter-flow orientation with air flowing with gravity producing the most uniform temperature distribution

    Optimizing the architecture of lung-inspired fuel cells

    Get PDF
    A finite-element model of a polymer electrolyte membrane fuel cell (PEMFC) with fractal branching, lung-inspired flow-field is presented. The effect of the number of branching generations N on the thickness of the gas diffusion layer (GDL) and fuel cell performance is determined. Introduction of a fractal flow-field to homogenize reactant concentration at the flow-field | GDL interface allows for the use of thinner GDLs. The model is coupled with an optimized cathode catalyst layer microstructure with respect to platinum utilization and power density, revealing that the 2020 DoE target of ~8 kW/gPt is met at N = 4 generations, and a platinum utilization of ~36 kW/gPt is achieved at N = 6 generations. In terms of the overall fuel cell stack architecture, our results indicate that either the platinum loading or the number of cells in the stack can be reduced by ~75%, the latter option of which, when combined with a 100 µm GDL, can lead to >80% increase in the volumetric power density of the fuel cell stack

    Visualising coke-induced degradation of catalysts used for CO2-reforming of methane with X-ray nano-computed tomography

    Get PDF
    The switch from a carbon-based to a hydrogen-based economy requires environmentally friendly methods for hydrogen production. CO2-reforming of methane promises to be a greener alternative to steam-methane reforming, which accounts for the majority of hydrogen production today. For this dry process to become industrially competitive, challenges such as catalyst deactivation and degradation through coke formation must be better understood and ultimately overcome. While bulk characterisation methods provide a wealth of useful information about the carbon formed during coking, spatially resolved techniques are required to understand the type and extent of degradation of supported catalyst particles themselves under coking conditions. Here, lab-based X-ray nano-computed tomography, in conjunction with a range of complementary techniques, is utilised to understand the effects of the nickel-to-cobalt ratio on the degradation of individual supported catalyst particles. Findings suggest that a bimetallic system greatly outperforms monometallic catalysts, with the ratio between nickel and cobalt having a significant impact on the type and quantity of the carbon formed and on the extent of supported catalyst breakdown

    A lung-inspired approach to scalable and robust fuel cell design

    Get PDF
    A lung-inspired approach is employed to overcome reactant homogeneity issues in polymer electrolyte fuel cells. The fractal geometry of the lung is used as the model to design flow-fields of different branching generations, resulting in uniform reactant distribution across the electrodes and minimum entropy production of the whole system. 3D printed, lung-inspired flow field based PEFCs with N = 4 generations outperform the conventional serpentine flow field designs at 50% and 75% RH, exhibiting a 20% and 30% increase in performance (at current densities higher than 0.8 A cm2) and maximum power density, respectively. In terms of pressure drop, fractal flow-fields with N = 3 and 4 generations demonstrate 75% and 50% lower values than conventional serpentine flow-field design for all RH tested, reducing the power requirements for pressurization and recirculation of the reactants. The positive effect of uniform reactant distribution is pronounced under extended current-hold measurements, where lung-inspired flow field based PEFCs with N = 4 generations exhibit the lowest voltage decay (B5 mV h1). The enhanced fuel cell performance and low pressure drop values of fractal flow field design are preserved at large scale (25 cm2), in which the excessive pressure drop of a large-scale serpentine flow field renders its use prohibitive

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Get PDF
    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems

    Failure and hazard characterisation of high-power lithium-ion cells via coupling accelerating rate calorimetry with in-line mass spectrometry, statistical and post-mortem analyses

    Get PDF
    Lithium-ion battery safety continues to be an obstacle for electric vehicles and electrified aerospace. Cell failure must be studied in order to engineer improved cells, battery packs and management systems. In this work, the thermal runaway of commercially available, high-power cells is studied, to understand the optimal areas to develop mitigation strategies. Accelerating rate calorimetry is coupled with mass spectrometry to examine self-heating and the corresponding evolution of gases. A statistical analysis of cell failure is then conducted, combined with post-mortem examinations. The methodology forms a robust assessment of cell failure, including the expected worst- and best-cases, and the associated real-world hazards. Cells produce a highly flammable, toxic gas mixture which varies over the course of self-heating. Failure also produces particulate matter which poses a severe health hazard. Critically, the onset of self-heating is detectable more than a day in advance of full thermal runaway. Likewise, voltage drops and leaks are detectable prior to venting, highlighting the potential for highly effective early onset detection. Furthermore, the behaviour of the cap during thermal runaway indicates that ejection of material likely reduces the chance of thermal runaway propagation to neighbouring cells. These findings also emphasise that research must be conducted safely

    Measurement of water uptake in thin-film Nafion and anion alkaline exchange membranes using the quartz crystal microbalance

    Get PDF
    Water uptake, sorption mechanics and swelling characteristics of thin-film Nafion and a commercially available Tokuyama alkaline anion exchange membrane ionomer from the vapour phase is explored using a quartz crystal microbalance (QCM). The water uptake measures the number of water molecules adsorbed by the ionomer per functional group and is determined in-situ using the QCM frequency responses allowing for comparison with nanogram precision. Crystal admittance spectroscopy, along with equivalent circuit fitting, is applied to both thin films for the first time and is used to investigate the ionomer's viscoelastic changes during hydration; to elucidate the mechanisms at play during low, medium and high relative humidities
    • …
    corecore