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Abstract 

 

The encapsulation of caesium (Cs) and strontium (Sr) contaminated clinoptilolite in Na and K 

based metakaolin geopolymers is reported. When Cs or Sr loaded clinoptilolite is mixed with 

a metakaolin geopolymer paste, the high pH of the activating solution and the high 

concentration of ions in solution cause ion exchange reactions and dissolution of clinoptilolite 

with release of Cs and Sr into the geopolymer matrix. The leaching of Cs and Sr from 

metakaolin-based geopolymer has therefore been investigated. It was found that Na-based 

geopolymers reduce leaching of Cs compared to K-based geopolymers and the results are in 

agreement with the hard and soft acids and bases (HSAB) theory. Cs ions are weak Lewis acids 

and aluminates are a weak Lewis base. During the formation of the geopolymer matrix Cs ions 

are preferentially bound to aluminate phases and replace Na in the geopolymer structure. Sr 

uptake by Na-geopolymers is limited to 0.4 mole Sr per mole of Al and any additional Sr is 

immobilised by the high pH which causes precipitation of Sr as low solubility hydroxide and 

carbonate phases. There was no evidence of any other phases being formed when Sr or Cs are 

added to metakaolin geopolymers. 
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Introduction  

Geopolymers are inorganic materials containing a network of Si-O-Al bonds. The aluminate 

and silicate groups have tetrahedral structures. Al bonded to four oxygen atoms has a negative 

charge and this is balanced by an alkaline ion, typically Na+ or K+. The production of a 

geopolymer requires aluminate and silicate materials [1]. Alumino-silicates are typically solids 

while additional silicate is added as an alkaline silicate solution [2]. Metakaolin (MK), coal fly 

ashes and metallurgical slags are typical alumino-silicates [3, 4] and these are mixed with a 

highly alkaline solution or alkali silicate solution [5-9]. On mixing dissolution/precipitation 

reactions occur which results in the formation of a geopolymer structure [10].  

 

Geopolymers have been proposed as a potential replacement for Portland cements because of 

their lower carbon footprint and suitable mechanical properties [11-14]. Significant research 

has been completed to understand the reaction kinetics, the influence of different alumino-

silicate sources, and the influence of reaction parameters such as the curing temperature and 

time on mechanical properties [15-17]. Further properties such as fire and acid resistance, 

micro-bacterial resistance and high compressive strength make geopolymers attractive 

materials to encapsulate intermediate level nuclear waste (ILW) such as radioactive Cs and Sr 

[18-24] produced during fission of uranium [25]. Radioactive Cs has similar properties to 

potassium (K) and after intake into the body it is absorbed by the gastrointestinal tract and built 

into the muscle structure [26, 27]. There it undergoes β decay which can damage the cell 

structures. Radioactive Sr has similar properties to Ca and therefore concentrates in bones and 

teeth [28, 29] with Sr decay causing bone tumours and leukaemia.  

 

The radioactive isotopes of Cs and Sr are always present in the cooling water of nuclear reactors 

and in storage ponds as ions and this means the water cannot be disposed into the sea until Cs 

and Sr have been removed. The natural zeolite clinoptilolite has high exchange capacity for 

both ions and is widely used as an absorbent. The clinoptilolite is then classified as intermediate 

level waste (ILW) and therefore needs to be encapsulated [30]. The most widely used 

encapsulation matrices for ILW are cement-based systems. It has been reported that the high 

pH of cement paste will partially dissolve clinoptilolite with ion exchange of Cs and Sr [31-

33] and when these elements are released into the cement matrix further leaching may occur. 
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Geopolymers have been proposed as an alternative encapsulation matrix for Cs and Sr loaded 

clinoptilolite [22] and the aim of this research was to understand the behaviour of Cs and Sr 

doped clinoptilolite when encapsulated in metakaolin based geopolymers. 

 

Materials and Methods 

 

Materials 

A commercially available metakaolin (MK) was used in all experiments (MetaStar 501, 

Imerys, UK). The chemical composition (XRF) and the mean particle size of the MK are shown 

in Table 1. Activating solutions were prepared using sodium silicate solution (26wt% 

SiO2/8wt% Na2O, VWR International, Pennsylvania, USA), potassium silicate solution 

(23.4wt% SiO2/11.5wt% K2O, PQ Corporation, UK), NaOH pellets and KOH pellets (Fisher 

Ltd, New Hampshire, USA) and deionised water. Caesium hydroxide (CsOH) and strontium 

hydroxide (Sr(OH)2) were obtained from Sigma-Aldrich (Missouri, USA). Clinoptilolite 

(KNa2Ca2(Si29Al7)O72 x 24H2O) with a particle size of between 1 and 4 mm was obtained from 

Sellafield (UK) to produce a simulated nuclear waste. This was loaded with Cs and Sr ions 

using caesium nitrate (CsNO3) and strontium nitrate (Sr(NO3)2) solutions (Fisher Ltd, New 

Hampshire, USA). 

 

Sample preparation 

The molar Al:Si:x:H2O ratio was 1:2:y:9, where x = sodium or potassium and y = 0.7, 1.0 or 

1.3. A H2O/Al ratio of 9 was chosen to obtain a low viscosity paste to ensure suitable mixing. 

The activating solution was prepared using appropriate quantities of sodium silicate solution, 

KOH/NaOH and water and these were mixed and stirred for 24 hours. After reaching 

equilibrium the activation solution was mixed with metakaolin and CsOH and Sr(OH)2. The 

paste formed was stirred for 3 minutes and then placed in sealed polyethylene bags for curing 

at ambient temperature (22±3°C) for 14 days. Previous encapsulation experiments had added 

Cs and Sr as nitrates [22]. However, during preliminary tests mixing up to 12.5 wt% of CsNO3 

and Sr(NO3)2 in the geopolymer paste decreased the paste pH and this led to incomplete 

dissolution of metakaolin and incomplete geopolymer formation. Furthermore, it was assumed 

that if Cs and Sr are leaching from clinoptilolite they would form hydroxides because of the 

high pH of the activating solution.  

 

Preparation of simulated waste 
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Simulated ILW in the form of contaminated clinoptilolite was prepared by mixing 25g of 

clinoptilolite with 250 ml of solution containing 0.5 M CsNO3 and 0.5 M Sr(NO3)2. This was 

heated to 60°C and stirred at this temperature for 4 days. After cooling to room temperature, 

the clinoptilolite was washed with deionised water to remove unabsorbed Cs+ and Sr2+ ions and 

dried at 110°C. The contaminated clinoptilolite was then dissolved in 1M HCl and analysed by 

inductively coupled plasma optical emission spectroscopy (ICP-OES) from Perkin Elmer 

(Massachusetts, USA). It was found that clinoptilolite had absorbed 18wt% of Cs+ and 3wt% 

of Sr2+. 

 

Structural interactions of clinoptilolite with geopolymers 

To determine the effect of potential dissolution of clinoptilolite after encapsulation, dry 

clinoptilolite was mixed with geopolymer paste, placed in a plastic mould, covered with cling 

film to avoid moisture evaporation and cured for 14 days at room temperature. After de-

moulding, approximately 2 mm of the surface was removed and analysed using SEM-EDX 

(JEOL JSM6480LV, Massachusetts, USA). To simulate the stability of Cs+ and Sr2+ 

contaminated clinoptilolite after mixing with the activation solution, different buffer solutions 

with a pH of 10 to 13.5 have been prepared. In this study, it was demonstrated that this pH 

range corresponds to the potential pH-value of the geopolymer paste after metakaolin is mixed 

with the activation solution. 100mg of contaminated clinoptilolite have been milled to a mean 

particle size of 44μm, dried at 110°C for 24h and mixed with 10ml buffer solution. The 

suspension was stirred for 7 days at RT, filtered and analysed by ICP-OES (Optima 7300 DV, 

Perkin Elmer, Massachusetts, USA).  

 

Leaching of Cs and Sr 

Leaching of Cs and Sr from geopolymer samples was determined using European Standard BS 

EN 12457-2:2002 [34]. After 14 days curing, samples were dried at 110°C for 24 hours, milled 

to a mean particle size of 44 μm and 1.50 g of the milled material mixed with 15 ml deionised 

water and stirred for 1 day at room temperature. The solutions were then filtered and analysed 

by ICP-OES (Optima 7300 DV, Perkin Elmer, Massachusetts, USA).  

 

Interactions of Cs and Sr with the geopolymer matrix 

Changes in the crystalline structure due to incorporation of Cs and Sr were assessed using Cu 

Kα radiation diffraction (PANalytical X-Pert Pro MPD diffractometer, Philips, Netherlands). 
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In addition, Sr containing samples have been analysed using thermo-gravimetric analysis 

(TGA, Netzsch-STA 449 f1 Jupiter, Germany). TGA/DSC measurements were only conducted 

for Sr containing samples because previous work showed that Cs does not influence the 

properties at high temperatures [35]. 

 

pH change during setting and leachate pH  

To measure the change of the pH during setting and curing of geopolymers as well as of the 

leachate, geopolymer samples were prepared as explained earlier and the pH measured by 

extraction. Samples were milled without drying to a fine powder (mean particle size 44 μm) 

and mixed with deionised water at a w/s ratio of 3:2 ml/g [36]. This was the lowest possible 

w/s ratio as it has been suggested that low w/s ratios provide more accurate results [36]. The 

mixtures were stirred for 15 minutes to obtain equilibrium. Before each measurement, the pH 

meter (FisherbrandHydrus 500 pH-meter, New Hampshire, USA) was calibrated using a three 

point calibration. 

 

 

Results and Discussion 

 

Interaction of clinoptilolite with the geopolymer matrix 

The interface between a clinoptilolite particle and the Na based geopolymer encapsulation 

matrix is shown in Figures 1, with similar results obtained using K based geopolymer. Figure 

1 shows that a clear interfacial transition zone (ITZ) forms between the clinoptilolite particle 

and the geopolymer matrix. In this zone, the molar Si:Al ratio gradually increases from 2 at the 

edge of the ITZ to 5 near the clinoptilolite particle as can be seen in Figure 1b. The thickness 

of the ITZ zone is approximately 0.15 mm. The Si:Al ratio of 2 agrees with the composition of 

the geopolymer matrix, whereas as a Si:Al ratio of 5 is consistent with the Si:Al ratio in 

clinoptilolite. The gradual change of the Si:Al ratio in the ITZ indicates that as the geopolymer 

matrix forms the surface of the clinoptilolite dissolves due to the high pH. This means that the 

mechanical properties in the ITZ will be different from those of clinoptilolite and the 

geopolymer matrix [8, 37]. Furthermore, a crack between the geopolymer matrix and the 

clinoptilolite particle can be seen. This crack appeared during the SEM analysis and is due to 

water evaporation following shrinkage of the geopolymer matrix after the vacuum was applied. 
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In previous work, it was demonstrated that metakaolin based geopolymers have the tendency 

to shrink and crack when structural water is removed [38].  

 

The formation of an ITZ with a length of 0.15 mm indicates that during geopolymerisation the 

surface of clinoptilolite dissolves and the released aluminates and silicates take part in the 

reaction. This dissolution of clinoptilolite is most likely initiated from the high pH of the 

activation solution, although a decrease over time is measured, as shown in Figure 2a. This 

decrease over time is due to the consumption of hydroxides during the dissolution process and 

polymerisation step. Based on the measured pH in the geopolymer matrix, buffer solutions 

were prepared covering the expected pH range and the dissolved Si4+ and Al3+ and released 

Cs+ from Cs/Sr contaminated clinoptilolite were measured using ICP-OES. The dissolution 

results are shown in Figure 2b. Although this dissolution method does not consider any 

precipitated products such as Al(OH)3, it can be seen that dissolution of clinoptilolite starts at 

a pH of 11 and as the pH increases more Si and Al dissolves. Of interest is that Cs ions are 

already released into the leachate at a pH of 10 when no dissolution of clinoptilolite can be 

measured. This is due to ion exchange reactions which take place when clinoptilolite is in 

contact with high concentration solutions [33]. However, as soon as the pH is high enough to 

dissolve the surface of clinoptilolite, even more Cs is released into the leachate. It is most likely 

that Sr is also released during the dissolution but this has not been measured due to the low 

solubility of Sr(OH)2 at high pH values. 

 

Leaching of Cs from geopolymers 

It is clear that Cs and Sr have potential to migrate into the encapsulating matrix during 

geopolymer formation although precise quantification of this effect is difficult. It is expected 

that near clinoptilolite particles the Cs+ and Sr2+ concentration will be higher and that this will 

reduce gradually with distance and therefore it is necessary to investigate the leaching of Cs 

and Sr ions from a geopolymer matrix. However, both ions have different characteristics and 

will have different chemical interactions with the geopolymer matrix. 

 

The interaction of Cs with geopolymer paste was studied by varying the molar Al:x (x=Na or 

K) ratio while keeping the molar Al:Si ratio constant at 2 [39]. The molar Al:x ratio was varied 

between 0.7 and 1.3 and the corresponding leaching results are shown in Figures 3 and 4. 

Leaching of charge balancing cations occurs before Cs is added and the release of Na 
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demonstrates that metakaolin does not fully react during the formation of the geopolymer 

matrix  [40]. Leaching of Na and K reduces when the molar Al:x ratio is reduced to 1:0.7 and 

remains low even when Cs is added. Cs+ ions accelerate dissolution of metakaolin and act as 

additional charge balancing cation. When the molar Al:x ratio is higher at 1.0, leaching of Na 

and K increases. No Cs initially leaches from the matrix, independent of the amount of Na or 

K or whether Na or K is used. However, when high Cs concentrations are present this effect 

only remains for Na based geopolymers. When K is used as the charge balancing cation, Cs 

begins to leach at molar Al:Cs ratios of 1:0.2. This indicates that K-based geopolymers have a 

lower selectivity for Cs compared to Na-based geopolymers which is in agreement with 

previous studies [41]. This observed selectivity of Cs when Na and K are present is probably 

due to the hard and soft acids and bases (HSAB) principle [42, 43]. By comparing the charge 

densities of the different ions it can be seen that Na+ has the highest charge density due to a 

small ion radius followed by K+ and then Cs+ as shown in Table 2. This means that Na+ is a 

stronger Lewis acid compared to K+ and Cs+. Furthermore, by considering Al(OH)4
- as a weak 

Lewis base, a reaction between aluminate and Cs+ is favoured, followed by K+ and Na+. 

However, the charge density of Cs+ and K+ is fairly similar which means that with increasing 

Cs content, aluminate selectivity reduces due to the high availability of each ion. This 

explanation is in agreement with previous work where for a mixed K/Na system it was observed 

that K+ was preferentially absorbed at AlO4
- sites rather than Na+ [44]. 

 

The amount of leached Na and K also indicates the applicability of the HSAB principle. When 

Cs is replacing Na or K as the charge balancing cation, the amount incorporated should displace 

an equal amount of the charge balancing cations. When 0.1mol Cs is incorporated, 0.1mol of 

either Na or K should be released as seen in Figures 3 and 4 for a molar Al:Na/K ratios of 1:1. 

The interaction of Cs with the geopolymer matrix appears limited to an exchange with the 

charge balancing counter ions. There is limited change to the geopolymer structure as shown 

in Figure 5, as the XRD data is that of a normal geopolymer, with an amorphous phase being 

the main feature. 

 

Encapsulation of Sr in Na based geopolymers 

The encapsulation of Cs in geopolymers shows promising results and these are enhanced when 

Na is used as the charge balancing cation, in agreement with the HSAB principle. Therefore, 

the Sr encapsulation experiments focussed only on Na based geopolymers.  
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Leaching results are shown in Figure 6. Without adding Sr, approximately 0.1mol Na+ ions are 

leaching from the pure geopolymer, in agreement with Figures 3 and 4. With increasing Sr 

content in the geopolymer the amount of Na leached from the matrix increases but the Sr 

leaching remains below detection limit, probably due to the pH of the leachate. Sr(OH)2 has a 

relatively low solubility at pH 7 and solubility decreases with increasing pH. At lower Sr 

concentrations leaching of Na follows a linear trend which is similar to the leaching of Na when 

Sr replaces Na as the charge balancing cation. This indicates that at least some of the Sr is the 

charge balancing cation. With increasing Sr concentration the linear Na+ leaching stops and 

stabilises at approximately 0.4mol Na per mole Al. This indicates that up to 0.40 mole of Sr 

per mole of Al can be incorporated as a charge balancing ion.  

 

At higher concentrations Sr could possibly be incorporated in the geopolymer gel structure. 

For Na based geopolymers containing Ca it has been suggested that a C-S-H or (N,C)-A-S-H 

gel is formed [45-48]. These studies showed that the aluminate competes with Ca for the free 

silicates and the formation of CSH gel was observed [45, 49]. Because the chemistry of Sr and 

Ca are similar Sr may be consumed in a similar manner to Ca in the formation of an analogous 

gel phase. However, it is difficult to prove the presence of such a gel from the leaching results. 

Therefore the thermal decomposition behaviour of Sr2+ containing geopolymers was 

determined using thermogravimetric analysis (TGA). In previous studies, TGA has already 

been used to characterise CSH gel [50, 51]. Here, it was used to evaluate indirectly the Sr 

uptake by the measurement of the de-hydroxylation of Sr(OH)2. From the results shown in 

Figure 7, it can be seen that up to ~300°C the mass loss that occurs can be attributed to the loss 

of structural water from the geopolymer. Although all samples were dried before measuring, 

the mass loss is relatively high indicating that the geopolymer samples are hygroscopic and 

contain free hydroxide groups. Between 400°C and 500°C another mass loss is observed due 

to de-hydroxylation of Sr(OH)2 to SrO [52]. From this mass loss it is possible to 

stoichiometrically determine the amount of un-reacted Sr(OH)2 shown in Figure 7b. From this 

figure, it can be seen that for a molar ratio Sr:Al of 0.6 approximately 70% of the added Sr(OH)2 

has reacted and been incorporated into the geopolymer structure. Since 70% of 0.6 is 0.42 mole 

Sr per mole Al, which is the maximum amount of Sr built in as charge balancing cation, it 

appears that there is no real evidence for an analogue gel similar to CSH gel in the geopolymers.  

 

The XRD results in Figure 8 strengthen this interpretation of the experimental data. Up to 0.1 

mole Sr per mole Al, there are hardly any crystalline phases containing Sr, consistent with Sr 
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replacing other charge balancing ions, whereas at 0.6 mole Sr per mole Al, significant amounts 

of strontium hydroxide and strontium carbonate are found. Although there are some peaks that 

might be attributed to strontium silicate, the majority of the Sr is present as hydroxide or 

carbonate and the low leaching is due to the low solubility of these phases. 

 

Conclusions 

 

Metakaolin based geopolymers can be used to encapsulate and immobilise contaminated 

clinoptilolite. However the high pH of the activating solution dissolves the clinoptilolite surface 

and an interfacial transition zone is formed with higher Al to Si ratio. The dissolution leads to 

the release of Cs and Sr and the interaction of these ions with the geopolymer. Cs and Sr will 

exchange with Na and K ions within the geopolymer and therefore become immobilised. Up 

to 0.2 mole Cs per mole of Al can displace K and a larger amount can displace Na in accordance 

with the HSAB principle. The uptake by Na-geopolymers of Sr is limited to 0.4 mole Sr per 

mole of Al. Any excess Sr is also immobilised due to the high pH, which leads to precipitation 

of the Sr in low solubility hydroxide and carbonate phases. There is no evidence for any other 

phases forming when Sr or Cs are added to geopolymers. 
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Table 1: Chemical composition of metakaolin percent and mean particle size. 

  
SiO2 Al2O3 Na2O K2O 

other  

oxides 
LOI 

mean particle 

 size [µm] 

MK 59.49 34.01 0.00 1.95 3.09 1.11 3.90 

 

 

 

Table 2: Physical properties of Na+, K+ and Cs+ cations [51]. The ion radius is given for a 

coordination number of 6. 

  Na+ K+ Cs+ 

Ion radius [Å] 1.02 1.38 1.67 

Charge density [Z/r] 1 0.75 0.60 
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Figure 1: SEM image of polished Na based geopolymer after 28 days curing. The molar 

Al:Si:Na:H2O ratio of the geopolymer paste was 1:2:1:9, A = clinoptilolite, B = interfacial 

transition zone (ITZ), C = geopolymer matrix, b) EDX results of two independent 

measurements. 
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Figure 2: a) Change of the pH value of geopolymers during setting using different cations; b) 

Dissolution of clinoptilolite and release of Cs+ at different pH-values. The measured 

concentration of Al and Si does not consider any precipitation products. 
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Figure 3: Leaching of Na and Cs of Na-based geopolymers, varying the molar Al:Na ratio, in 

all cases the Cs concentration was below the detection limit of 5ppm. 
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Figure 4: Leaching of K and Cs out of K-based geopolymers, altering the molar Al:K ratio, 

the molar Al:Si ratio was 1:2. 
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Figure 5: X-ray diffraction data for Na-based geopolymer loaded with Cs. The molar Al:Na 

ratio was 1:1. Key *= quartz (SiO2).  

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

le
a

c
h
e

d
 c

a
ti
o

n
 [
m

o
l/
m

o
l 
A

l]

 Na leaching

 

 

molar Sr:Al ratio

 Sr leaching

p
H

 o
f le

a
c
h

a
te

12.00

12.25

12.50

12.75

13.00
 

A*

 

Figure 6: Leaching of Sr(OH)2 and Na from geopolymers. A*= expected Na leaching if Sr 

replaces Na as the charge balancing cation. The molar Al:Na ratio was 1:1. 
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Figure 7: TGA results from geopolymers containing Sr(OH)2, a) Mass loss over temperature. 

The numbers for each line represent the molar Sr:Al ratio. b) Calculated Sr(OH)2 based on 

TGA results using mass loss from de-hydroxylation. 
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Figure 8: Crystalline phase of geopolymers phases in geopolymers mixed with Sr. The 

numbers represent the molar Sr:Al ratio. Key: a: Sr(OH)2, b: SrCO3, c: strontium silicate 

aluminate, d: quartz (SiO2) from MK. 

 

 

 

 

 


